SQLITE_BTREE_H
sqlite3.c, 237436行 = 全部源文件,找东西比多文件查找方便多了:-),字符串查找一点都不慢。
不要太害怕,SQLite说它的代码里有非常多是用来做数据完整性检查和测试的。但愿B树,虚数据库引擎之类的不是太长。
/*************************************************************************
** This header file defines the interface that the sqlite B-Tree file
** subsystem. See comments in the source code for a detailed description
** of what each interface routine does.
*/
#ifndef SQLITE_BTREE_H
#define SQLITE_BTREE_H /* TODO: This definition is just included so other modules compile. It
** needs to be revisited.
*/
#define SQLITE_N_BTREE_META 16 /*
** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
*/
#ifndef SQLITE_DEFAULT_AUTOVACUUM
#define SQLITE_DEFAULT_AUTOVACUUM 0
#endif #define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */
#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */
#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */ /*
** Forward declarations of structure
*/
typedef struct Btree Btree;
typedef struct BtCursor BtCursor;
typedef struct BtShared BtShared;
typedef struct BtreePayload BtreePayload; SQLITE_PRIVATE int sqlite3BtreeOpen(
sqlite3_vfs *pVfs, /* VFS to use with this b-tree */
const char *zFilename, /* Name of database file to open */
sqlite3 *db, /* Associated database connection */
Btree **ppBtree, /* Return open Btree* here */
int flags, /* Flags */
int vfsFlags /* Flags passed through to VFS open */
); /* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
** following values.
**
** NOTE: These values must match the corresponding PAGER_ values in
** pager.h.
*/
#define BTREE_OMIT_JOURNAL 1 /* Do not create or use a rollback journal */
#define BTREE_MEMORY 2 /* This is an in-memory DB */
#define BTREE_SINGLE 4 /* The file contains at most 1 b-tree */
#define BTREE_UNORDERED 8 /* Use of a hash implementation is OK */ SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);
SQLITE_PRIVATE int sqlite3BtreeSetSpillSize(Btree*,int);
#if SQLITE_MAX_MMAP_SIZE>0
SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64);
#endif
SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(Btree*,unsigned);
SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);
SQLITE_PRIVATE Pgno sqlite3BtreeMaxPageCount(Btree*,Pgno);
SQLITE_PRIVATE Pgno sqlite3BtreeLastPage(Btree*);
SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int);
SQLITE_PRIVATE int sqlite3BtreeGetRequestedReserve(Btree*);
SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p);
SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int);
SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *);
SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int,int*);
SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char*);
SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*, int);
SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*);
SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*,int,int);
SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int);
SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, Pgno*, int flags);
SQLITE_PRIVATE int sqlite3BtreeTxnState(Btree*);
SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*); SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *pBtree);
#ifndef SQLITE_OMIT_SHARED_CACHE
SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock);
#endif /* Savepoints are named, nestable SQL transactions mostly implemented */
/* in vdbe.c and pager.c See https://sqlite.org/lang_savepoint.html */
SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *, int, int); /* "Checkpoint" only refers to WAL. See https://sqlite.org/wal.html#ckpt */
#ifndef SQLITE_OMIT_WAL
SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *);
#endif SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *);
SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *);
SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *); SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *); /* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
** of the flags shown below.
**
** Every SQLite table must have either BTREE_INTKEY or BTREE_BLOBKEY set.
** With BTREE_INTKEY, the table key is a 64-bit integer and arbitrary data
** is stored in the leaves. (BTREE_INTKEY is used for SQL tables.) With
** BTREE_BLOBKEY, the key is an arbitrary BLOB and no content is stored
** anywhere - the key is the content. (BTREE_BLOBKEY is used for SQL
** indices.)
*/
#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
#define BTREE_BLOBKEY 2 /* Table has keys only - no data */ SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*);
SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, i64*);
SQLITE_PRIVATE int sqlite3BtreeClearTableOfCursor(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreeTripAllCursors(Btree*, int, int); SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue);
SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value); SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p); /*
** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta
** should be one of the following values. The integer values are assigned
** to constants so that the offset of the corresponding field in an
** SQLite database header may be found using the following formula:
**
** offset = 36 + (idx * 4)
**
** For example, the free-page-count field is located at byte offset 36 of
** the database file header. The incr-vacuum-flag field is located at
** byte offset 64 (== 36+4*7).
**
** The BTREE_DATA_VERSION value is not really a value stored in the header.
** It is a read-only number computed by the pager. But we merge it with
** the header value access routines since its access pattern is the same.
** Call it a "virtual meta value".
*/
#define BTREE_FREE_PAGE_COUNT 0
#define BTREE_SCHEMA_VERSION 1
#define BTREE_FILE_FORMAT 2
#define BTREE_DEFAULT_CACHE_SIZE 3
#define BTREE_LARGEST_ROOT_PAGE 4
#define BTREE_TEXT_ENCODING 5
#define BTREE_USER_VERSION 6
#define BTREE_INCR_VACUUM 7
#define BTREE_APPLICATION_ID 8
#define BTREE_DATA_VERSION 15 /* A virtual meta-value */ /*
** Kinds of hints that can be passed into the sqlite3BtreeCursorHint()
** interface.
**
** BTREE_HINT_RANGE (arguments: Expr*, Mem*)
**
** The first argument is an Expr* (which is guaranteed to be constant for
** the lifetime of the cursor) that defines constraints on which rows
** might be fetched with this cursor. The Expr* tree may contain
** TK_REGISTER nodes that refer to values stored in the array of registers
** passed as the second parameter. In other words, if Expr.op==TK_REGISTER
** then the value of the node is the value in Mem[pExpr.iTable]. Any
** TK_COLUMN node in the expression tree refers to the Expr.iColumn-th
** column of the b-tree of the cursor. The Expr tree will not contain
** any function calls nor subqueries nor references to b-trees other than
** the cursor being hinted.
**
** The design of the _RANGE hint is aid b-tree implementations that try
** to prefetch content from remote machines - to provide those
** implementations with limits on what needs to be prefetched and thereby
** reduce network bandwidth.
**
** Note that BTREE_HINT_FLAGS with BTREE_BULKLOAD is the only hint used by
** standard SQLite. The other hints are provided for extentions that use
** the SQLite parser and code generator but substitute their own storage
** engine.
*/
#define BTREE_HINT_RANGE 0 /* Range constraints on queries */ /*
** Values that may be OR'd together to form the argument to the
** BTREE_HINT_FLAGS hint for sqlite3BtreeCursorHint():
**
** The BTREE_BULKLOAD flag is set on index cursors when the index is going
** to be filled with content that is already in sorted order.
**
** The BTREE_SEEK_EQ flag is set on cursors that will get OP_SeekGE or
** OP_SeekLE opcodes for a range search, but where the range of entries
** selected will all have the same key. In other words, the cursor will
** be used only for equality key searches.
**
*/
#define BTREE_BULKLOAD 0x00000001 /* Used to full index in sorted order */
#define BTREE_SEEK_EQ 0x00000002 /* EQ seeks only - no range seeks */ /*
** Flags passed as the third argument to sqlite3BtreeCursor().
**
** For read-only cursors the wrFlag argument is always zero. For read-write
** cursors it may be set to either (BTREE_WRCSR|BTREE_FORDELETE) or just
** (BTREE_WRCSR). If the BTREE_FORDELETE bit is set, then the cursor will
** only be used by SQLite for the following:
**
** * to seek to and then delete specific entries, and/or
**
** * to read values that will be used to create keys that other
** BTREE_FORDELETE cursors will seek to and delete.
**
** The BTREE_FORDELETE flag is an optimization hint. It is not used by
** by this, the native b-tree engine of SQLite, but it is available to
** alternative storage engines that might be substituted in place of this
** b-tree system. For alternative storage engines in which a delete of
** the main table row automatically deletes corresponding index rows,
** the FORDELETE flag hint allows those alternative storage engines to
** skip a lot of work. Namely: FORDELETE cursors may treat all SEEK
** and DELETE operations as no-ops, and any READ operation against a
** FORDELETE cursor may return a null row: 0x01 0x00.
*/
#define BTREE_WRCSR 0x00000004 /* read-write cursor */
#define BTREE_FORDELETE 0x00000008 /* Cursor is for seek/delete only */ SQLITE_PRIVATE int sqlite3BtreeCursor(
Btree*, /* BTree containing table to open */
Pgno iTable, /* Index of root page */
int wrFlag, /* 1 for writing. 0 for read-only */
struct KeyInfo*, /* First argument to compare function */
BtCursor *pCursor /* Space to write cursor structure */
);
SQLITE_PRIVATE BtCursor *sqlite3BtreeFakeValidCursor(void);
SQLITE_PRIVATE int sqlite3BtreeCursorSize(void);
SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor*);
SQLITE_PRIVATE void sqlite3BtreeCursorHintFlags(BtCursor*, unsigned);
#ifdef SQLITE_ENABLE_CURSOR_HINTS
SQLITE_PRIVATE void sqlite3BtreeCursorHint(BtCursor*, int, ...);
#endif SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreeTableMoveto(
BtCursor*,
i64 intKey,
int bias,
int *pRes
);
SQLITE_PRIVATE int sqlite3BtreeIndexMoveto(
BtCursor*,
UnpackedRecord *pUnKey,
int *pRes
);
SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor*, int*);
SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*, u8 flags); /* Allowed flags for sqlite3BtreeDelete() and sqlite3BtreeInsert() */
#define BTREE_SAVEPOSITION 0x02 /* Leave cursor pointing at NEXT or PREV */
#define BTREE_AUXDELETE 0x04 /* not the primary delete operation */
#define BTREE_APPEND 0x08 /* Insert is likely an append */
#define BTREE_PREFORMAT 0x80 /* Inserted data is a preformated cell */ /* An instance of the BtreePayload object describes the content of a single
** entry in either an index or table btree.
**
** Index btrees (used for indexes and also WITHOUT ROWID tables) contain
** an arbitrary key and no data. These btrees have pKey,nKey set to the
** key and the pData,nData,nZero fields are uninitialized. The aMem,nMem
** fields give an array of Mem objects that are a decomposition of the key.
** The nMem field might be zero, indicating that no decomposition is available.
**
** Table btrees (used for rowid tables) contain an integer rowid used as
** the key and passed in the nKey field. The pKey field is zero.
** pData,nData hold the content of the new entry. nZero extra zero bytes
** are appended to the end of the content when constructing the entry.
** The aMem,nMem fields are uninitialized for table btrees.
**
** Field usage summary:
**
** Table BTrees Index Btrees
**
** pKey always NULL encoded key
** nKey the ROWID length of pKey
** pData data not used
** aMem not used decomposed key value
** nMem not used entries in aMem
** nData length of pData not used
** nZero extra zeros after pData not used
**
** This object is used to pass information into sqlite3BtreeInsert(). The
** same information used to be passed as five separate parameters. But placing
** the information into this object helps to keep the interface more
** organized and understandable, and it also helps the resulting code to
** run a little faster by using fewer registers for parameter passing.
*/
struct BtreePayload {
const void *pKey; /* Key content for indexes. NULL for tables */
sqlite3_int64 nKey; /* Size of pKey for indexes. PRIMARY KEY for tabs */
const void *pData; /* Data for tables. */
sqlite3_value *aMem; /* First of nMem value in the unpacked pKey */
u16 nMem; /* Number of aMem[] value. Might be zero */
int nData; /* Size of pData. 0 if none. */
int nZero; /* Extra zero data appended after pData,nData */
}; SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload,
int flags, int seekResult);
SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int flags);
SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int flags);
SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor*);
SQLITE_PRIVATE void sqlite3BtreeCursorPin(BtCursor*);
SQLITE_PRIVATE void sqlite3BtreeCursorUnpin(BtCursor*);
#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
SQLITE_PRIVATE i64 sqlite3BtreeOffset(BtCursor*);
#endif
SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*);
SQLITE_PRIVATE const void *sqlite3BtreePayloadFetch(BtCursor*, u32 *pAmt);
SQLITE_PRIVATE u32 sqlite3BtreePayloadSize(BtCursor*);
SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor*); SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(sqlite3*,Btree*,Pgno*aRoot,int nRoot,int,int*);
SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);
SQLITE_PRIVATE i64 sqlite3BtreeRowCountEst(BtCursor*); #ifndef SQLITE_OMIT_INCRBLOB
SQLITE_PRIVATE int sqlite3BtreePayloadChecked(BtCursor*, u32 offset, u32 amt, void*);
SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *);
#endif
SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);
SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor*, unsigned int mask);
SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *pBt);
SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void); #ifdef SQLITE_DEBUG
SQLITE_PRIVATE sqlite3_uint64 sqlite3BtreeSeekCount(Btree*);
#else
# define sqlite3BtreeSeekCount(X) 0
#endif #ifndef NDEBUG
SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
#endif
SQLITE_PRIVATE int sqlite3BtreeCursorIsValidNN(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeCount(sqlite3*, BtCursor*, i64*); #ifdef SQLITE_TEST
SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*);
#endif #ifndef SQLITE_OMIT_WAL
SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *);
#endif SQLITE_PRIVATE int sqlite3BtreeTransferRow(BtCursor*, BtCursor*, i64); /*
** If we are not using shared cache, then there is no need to
** use mutexes to access the BtShared structures. So make the
** Enter and Leave procedures no-ops.
*/
#ifndef SQLITE_OMIT_SHARED_CACHE
SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*);
SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*);
SQLITE_PRIVATE int sqlite3BtreeSharable(Btree*);
SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreeConnectionCount(Btree*);
#else
# define sqlite3BtreeEnter(X)
# define sqlite3BtreeEnterAll(X)
# define sqlite3BtreeSharable(X) 0
# define sqlite3BtreeEnterCursor(X)
# define sqlite3BtreeConnectionCount(X) 1
#endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*);
SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*);
SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*);
#ifndef NDEBUG
/* These routines are used inside assert() statements only. */
SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*);
SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*);
SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*);
#endif
#else # define sqlite3BtreeLeave(X)
# define sqlite3BtreeLeaveCursor(X)
# define sqlite3BtreeLeaveAll(X) # define sqlite3BtreeHoldsMutex(X) 1
# define sqlite3BtreeHoldsAllMutexes(X) 1
# define sqlite3SchemaMutexHeld(X,Y,Z) 1
#endif #endif /* SQLITE_BTREE_H */
1 /*
2 ** This routine does a complete check of the given BTree file. aRoot[] is
3 ** an array of pages numbers were each page number is the root page of
4 ** a table. nRoot is the number of entries in aRoot.
5 **
6 ** A read-only or read-write transaction must be opened before calling
7 ** this function.
8 **
9 ** Write the number of error seen in *pnErr. Except for some memory
10 ** allocation errors, an error message held in memory obtained from
11 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
12 ** returned. If a memory allocation error occurs, NULL is returned.
13 **
14 ** If the first entry in aRoot[] is 0, that indicates that the list of
15 ** root pages is incomplete. This is a "partial integrity-check". This
16 ** happens when performing an integrity check on a single table. The
17 ** zero is skipped, of course. But in addition, the freelist checks
18 ** and the checks to make sure every page is referenced are also skipped,
19 ** since obviously it is not possible to know which pages are covered by
20 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
21 ** checks are still performed.
22 */
23 SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(
24 sqlite3 *db, /* Database connection that is running the check */
25 Btree *p, /* The btree to be checked */
26 Pgno *aRoot, /* An array of root pages numbers for individual trees */
27 int nRoot, /* Number of entries in aRoot[] */
28 int mxErr, /* Stop reporting errors after this many */
29 int *pnErr /* Write number of errors seen to this variable */
30 ){
31 Pgno i;
32 IntegrityCk sCheck;
33 BtShared *pBt = p->pBt;
34 u64 savedDbFlags = pBt->db->flags;
35 char zErr[100];
36 int bPartial = 0; /* True if not checking all btrees */
37 int bCkFreelist = 1; /* True to scan the freelist */
38 VVA_ONLY( int nRef );
39 assert( nRoot>0 );
40
41 /* aRoot[0]==0 means this is a partial check */
42 if( aRoot[0]==0 ){
43 assert( nRoot>1 );
44 bPartial = 1;
45 if( aRoot[1]!=1 ) bCkFreelist = 0;
46 }
47
48 sqlite3BtreeEnter(p);
49 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
50 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
51 assert( nRef>=0 );
52 sCheck.db = db;
53 sCheck.pBt = pBt;
54 sCheck.pPager = pBt->pPager;
55 sCheck.nPage = btreePagecount(sCheck.pBt);
56 sCheck.mxErr = mxErr;
57 sCheck.nErr = 0;
58 sCheck.bOomFault = 0;
59 sCheck.zPfx = 0;
60 sCheck.v1 = 0;
61 sCheck.v2 = 0;
62 sCheck.aPgRef = 0;
63 sCheck.heap = 0;
64 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
65 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
66 if( sCheck.nPage==0 ){
67 goto integrity_ck_cleanup;
68 }
69
70 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
71 if( !sCheck.aPgRef ){
72 sCheck.bOomFault = 1;
73 goto integrity_ck_cleanup;
74 }
75 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
76 if( sCheck.heap==0 ){
77 sCheck.bOomFault = 1;
78 goto integrity_ck_cleanup;
79 }
80
81 i = PENDING_BYTE_PAGE(pBt);
82 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
83
84 /* Check the integrity of the freelist
85 */
86 if( bCkFreelist ){
87 sCheck.zPfx = "Main freelist: ";
88 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
89 get4byte(&pBt->pPage1->aData[36]));
90 sCheck.zPfx = 0;
91 }
92
93 /* Check all the tables.
94 */
95 #ifndef SQLITE_OMIT_AUTOVACUUM
96 if( !bPartial ){
97 if( pBt->autoVacuum ){
98 Pgno mx = 0;
99 Pgno mxInHdr;
100 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
101 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
102 if( mx!=mxInHdr ){
103 checkAppendMsg(&sCheck,
104 "max rootpage (%d) disagrees with header (%d)",
105 mx, mxInHdr
106 );
107 }
108 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
109 checkAppendMsg(&sCheck,
110 "incremental_vacuum enabled with a max rootpage of zero"
111 );
112 }
113 }
114 #endif
115 testcase( pBt->db->flags & SQLITE_CellSizeCk );
116 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
117 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
118 i64 notUsed;
119 if( aRoot[i]==0 ) continue;
120 #ifndef SQLITE_OMIT_AUTOVACUUM
121 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
122 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
123 }
124 #endif
125 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64);
126 }
127 pBt->db->flags = savedDbFlags;
128
129 /* Make sure every page in the file is referenced
130 */
131 if( !bPartial ){
132 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
133 #ifdef SQLITE_OMIT_AUTOVACUUM
134 if( getPageReferenced(&sCheck, i)==0 ){
135 checkAppendMsg(&sCheck, "Page %d is never used", i);
136 }
137 #else
138 /* If the database supports auto-vacuum, make sure no tables contain
139 ** references to pointer-map pages.
140 */
141 if( getPageReferenced(&sCheck, i)==0 &&
142 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
143 checkAppendMsg(&sCheck, "Page %d is never used", i);
144 }
145 if( getPageReferenced(&sCheck, i)!=0 &&
146 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
147 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
148 }
149 #endif
150 }
151 }
152
153 /* Clean up and report errors.
154 */
155 integrity_ck_cleanup:
156 sqlite3PageFree(sCheck.heap);
157 sqlite3_free(sCheck.aPgRef);
158 if( sCheck.bOomFault ){
159 sqlite3_str_reset(&sCheck.errMsg);
160 sCheck.nErr++;
161 }
162 *pnErr = sCheck.nErr;
163 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
164 /* Make sure this analysis did not leave any unref() pages. */
165 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
166 sqlite3BtreeLeave(p);
167 return sqlite3StrAccumFinish(&sCheck.errMsg);
168 }
SQLITE_BTREE_H的更多相关文章
随机推荐
- 助你上手Vue3全家桶之Vue-Router4教程
目录 1,前言 1,Router 2.1,跳转 2.2,打开新页面 3,Route 4,守卫 4.1,onBeforeRouteLeave 4.2,onBeforeRouteUpdate 4.3,路由 ...
- ST表 求 RMQ(区间最值)
RMQ即Range Minimum/Maximun Query,中文意思:查询一个区间的最小值/最大值 比如有这样一个数组:A{3 2 4 5 6 8 1 2 9 7},然后问你若干问题: 数组A下标 ...
- hdu 2199 Can you solve this equation?(二分法求多项式解)
题意 给Y值,找到多项式 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y 在0到100之间的解. 思路 从0到100,多项式是单调的,故用二分法求解. 代码 double c ...
- JAVA笔记14__多线程共享数据(同步)/ 线程死锁 / 生产者与消费者应用案例 / 线程池
/** * 多线程共享数据 * 线程同步:多个线程在同一个时间段只能有一个线程执行其指定代码,其他线程要等待此线程完成之后才可以继续执行. * 多线程共享数据的安全问题,使用同步解决. * 线程同步两 ...
- Centos7 升级过内核 boot分区无法挂载修
参考连接:https://www.cnblogs.com/heqiuyong/p/11186301.html 故障图 挂载系统盘,光盘启动,急救模式, chroot /mnt/sysimage 报错 ...
- 谷歌chrome多个相同用户登陆同一个机器多开配置
创建快捷方式,目标中填写:路径+参数如下所示即可 参数:--user-data-dir=%LOCALAPPDATA%\Google\Chrome\%SessionName%
- 从0到1使用Kubernetes系列(六):数据持久化实战
本文是从 0 到 1 使用 Kubernetes 系列第六篇,上一篇<从 0 到 1 使用 Kubernetes 系列(五):Kubernetes Scheduling>介绍了 Kuber ...
- Eclipse简单介绍
1.编码设置:Windows>preference>Workspace>Other-UTF-8>apply and close: 2.字体大小设置:Windows>pre ...
- 1组-Alpha冲刺-4/6
一.基本情况 队名:震震带着六菜鸟 组长博客:https://www.cnblogs.com/Klein-Wang/p/15553196.html 小组人数:7人 二.冲刺概况汇报 王业震 过去两天完 ...
- LOTO示波器实测——光照强度传感器
loto最近推出了很多的周边传感器模块的实测案例,本文介绍和演示LOTO示波器实测光照强度传感器的使用. 下图就是主角感光模块,可以用来测量光照强度. 这个模块也很简单,只有3个引脚,一个电源,3.3 ...