LeNet-5是由Yann LeCun设计的用于手写数字识别和机器打印字符的卷积神经网络。她在1998年发表的论文《基于梯度学习的文本识别》中提出了该模型,并给出了对该模型网络架构的介绍。如下图所示,LeNet-5共有7层(不包括输入层),包含卷积层、下采样层、全连接层,而其输入图像为32*32.论文链接:Gradient-based learning applied to document recognition | IEEE Journals & Magazine | IEEE Xplore

 图1. LeNet-5网络架构

1.C1:卷积层

c1层采用卷积层对输入的图像进行特征提取,利用6个5*5的卷积核生成6个特征图(feature map)。其步长为1且不使用扩充值。因此卷积后的特征层为28*28.一个卷积核拥有的可训练参数为5*5+1=26,其中1为偏置参数。整个C1层可训练参数为(5*5+1)*6=156.

2.S2:下采样层

下采样(subsampling)层主要对特征进行降维处理,效果与池化相同。S2层使用2*2的滤波器池化C1的特征图,因此将生成6个尺寸为14*14的特征图。在计算时,将滤波器中的4个值相加,然后乘以可训练权值参数w,加上偏置参数b,最后通过sigmoid函数形成新的值。S2层的每个特征图中都有两个参数,一个是权值参数,一个是偏置参数,因此该层共有2*6=12个参数。

3.C3:卷积层

C3层有16个大小为5*5的卷积核,步长为1且不填充边界。C3层将S2层6个14*14的特征图卷积成16个10*10的特征图。值得注意的是,S2层与C3层的卷积核并不是全连接的,而是部分连接的。

图2:S2层特征图与C3层卷积核连接的组合

4.S4:下采样层

S4的滤波器与S2层的滤波器相似,也是2*2的,所以,S4层的特征图池化后,将生成16个5*5的特征图。S4层参数的个数为2*16=32.

5.C5:卷积层

C5层有120个5*5的卷积核,将产生120个1*1的特征图,与S4层是全连接的。C5层参数的个数不能参照C1层来计算,而是要参照C3层来计算,且此时是没有组合的,因此,应该是(5*5*16+1)*120=48120.

6.F6:全连接层

F6有84个单元,单元的个数与输出层的设计有关。该层作为典型的神经网络层,每一个单元都计算输入向量与权值参数的点积并加上偏置参数,然后传给sigmoid函数,产生该单元的一个状态并传递给输出层。在这里,将输出作为输出层的径向基函数的初始参数,用于识别完整的ASCII字符集。C5有120个单元;F6层有84个单元,每个单元都将容纳120个单元的计算结果。因此,F6层参数的个数为(120+1)*84=10164.

7.output:输出层

output层是全连接层,共有10个单元,代表数字0~9。利用径向基函数,将F6层84个单元的输出作为节点的输入xj,计算欧氏距离。距离越近,结果就越小,意味着识别的样本越符合该节点所代表的字符。由于该层是全连接层,参数个数为84*10=840。

网络搭建:

import torch.nn as nn
import torch.nn.functional as F class Net(nn.Module): def __init__(self):
super(Net, self).__init__()
#input image channel is one, output channels is six,5*5 square convolution
self.conv1=nn.Conv2d(1, 6, 5)
self.conv2=nn.Conv2d(6, 16, 5)
self.fc1=nn.Linear(16*5*5, 120)
self.fc2=nn.Linear(120, 84)
self.fc3=nn.Linear(84, 10) def forward(self, x):
#max pooling over a (2,2) window
#c1
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
#if the kernel size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x def num_flat_features(self, x):
#all dimensions except the batch dimension
size = x.size()[1:]
num_features = 1
for s in size:
num_features *= s
return num_features net = Net()
print(net)

LeNet-5网络搭建详解的更多相关文章

  1. Linux下DNS服务器搭建详解

    Linux下DNS服务器搭建详解 DNS  即Domain Name System(域名系统)的缩写,它是一种将ip地址转换成对应的主机名或将主机名转换成与之相对应ip地址的一种机制.其中通过域名解析 ...

  2. MySQL集群搭建详解

    概述 MySQL Cluster 是MySQL 适合于分布式计算环境的高实用.可拓展.高性能.高冗余版本,其研发设计的初衷就是要满足许多行业里的最严酷应用要求,这些应用中经常要求数据库运行的可靠性要达 ...

  3. VirtualBox开发环境的搭建详解(转)

    VirtualBox开发环境的搭建详解   有关VirtualBox的介绍请参考:VirtualBox_百度百科 由于VirtualBox官网提供的搭建方法不够详细,而且本人在它指导下,从下载所需的开 ...

  4. Windows GTK+ 环境搭建(详解)

    来源:http://blog.sina.com.cn/s/blog_a6fb6cc901017ygy.html Windows GTK+ 环境搭建 最近要做界面的一些东西,但是对微软提供的类库MFC不 ...

  5. 用netstat查看网络状态详解

    --用netstat查看网络状态详解 -----------------------------2014/06/11 一.Linux服务器上11种网络连接状态:                     ...

  6. Linux网络配置文件详解

    --Linux网络配置文件详解----------------------2013/10/03 目前在企业级服务器的Linux系统中,RHEL占有绝对的优势,不管是曾经在互联网公司还是在目前测试Vir ...

  7. Python环境搭建详解(Window平台)

    前言 Python,是一种面向对象的解释型计算机程序设计语言,是纯粹的自由软件,Python语法简洁清晰,特色是强制用空白符作为语句缩进,具有丰富和强大的库,它常被称为胶水语言. Python是一种解 ...

  8. Spring4.X + spring MVC + Mybatis3 零配置应用开发框架搭建详解(1) - 基本介绍

    Spring4.X + spring MVC + Mybatis3 零配置应用开发框架搭建详解(1) - 基本介绍 spring集成 mybatis Spring4.x零配置框架搭建 两年前一直在做后 ...

  9. Docker:网络模式详解

    Docker作为目前最火的轻量级容器技术,牛逼的功能,如Docker的镜像管理,不足的地方网络方面. Docker自身的4种网络工作方式,和一些自定义网络模式 安装Docker时,它会自动创建三个网络 ...

随机推荐

  1. Day007 计算器

    计算器 public static void main(String[] args) { double[] num={0,1}; String oprater="a"; doubl ...

  2. 软件测试中的测试用例Test Case原来是这么回事!

    如果你去找一份功能测试的工作,在软件测试工程师面试过程中,有一些面试官会来一两个非常简单的问题 什么是Test Case?你是如何去写Test Case的? 我们先来看一下测试用例的介绍 什么是测试用 ...

  3. 一次 Go 程序 out of memory 排查及反思

    前言 最近在搞数据导出模块,在测试大文件下载的过程中,报了 Out of memory (OOM) 错误,因为之前没有遇到过这类问题,导致此次排查问题花费了大半天,也走了不少弯路,特此复盘记录. 现象 ...

  4. 真正的原生JS数据双向绑定(实时同步)

    真正的原生JS数据双向绑定(实时同步) 接触过vue之后我感觉数据双向绑定实在是太好用了,然后就想着到底是什么原理,今天在简书上看到了一位老师的文章 js实现数据双向绑定 然后写出了我自己的代码 wi ...

  5. (KVM连载) 8.2.3 KVM CPU性能测试方法

    (KVM连载) 8.2.3 KVM CPU性能测试方法 01/08/2013MASTER  2 COMMENTS 8.2.3 性能测试方法 本节的CPU性能测试选取了SPEC CPU2006.内核编译 ...

  6. Linux useradd 命令介绍

    Linux useradd 命令介绍 作者: Alan Formy-duval 译者: LCTT Brooke Lau | 2020-01-06 22:58 使用 useradd 命令来添加用户(并且 ...

  7. 如何像如何像 NASA 顶级程序员一样编程 — 10 条重要原则

    https://www.oschina.net/news/90499/nasa-programmer-rule?from=20171112#0-qzone-1-7898-d020d2d2a4e8d1a ...

  8. shell 正则匹配IP地址

    比如255.255.255.255 ,共4段,我们将255分为四个部分,0-99,100-199,200-249,250-255 0-99:[1-9]?[0-9]               #    ...

  9. UCOS明白解析

        UCOSII 是一个可以基于 ROM 运行的.可裁减的.抢占式.实时多任务内核,具有高度可移植性,特别适合于微处理器和控制器,是和很多商业操作系统性能相当的实时操作系统(RTOS).为了提供最 ...

  10. LESS语法学习笔记

    LESS 通过编写less文件来快速生成css文件,对css的语法进行了扩展 Less语法 注释 单行注释不会被编译,多行才会被编译 变量 less:定义变量用@ scss:定义变量用$ @num: ...