题目大意

给定一个n个点,m条边的图,每条边有边权,而每个点\(i\)也可以直接到达\(j\),代价是\(i\ xor\ j\),给定一个S和T,求S到T的最小代价

其中\(n\le100000,m\le100000\)

一看这个数据范围,我们就知道显然不能建图~

那么就需要一点小技巧了

就是说,一条边可以由好几部分的边组合而成,而且代价还是相等的

注意 0 号结点也需要考虑(有可能两个节点编号按位与为0 ),并把异或值控制在 n 以内(出了 n 范围的点一定可以用 0号节点解决)

所以对于节点\(x\)我们只需要将他向 \(x\ xor \ 2^k\)连边就可以~

因为通过这个中转节点,他就可以到其他的能到的点,而且权值也是一样的

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
#include<queue>
#include<vector>
#define pa pair< int , int >
using namespace std; inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} const int maxn = 1e5+1e2;
const int maxm = 4e6+1e2; int point[maxn],nxt[maxm],to[maxm],val[maxm];
int n,m;
int vis[maxn],dis[maxn];
int cnt;
int s,t;
priority_queue<pa,vector<pa>,greater<pa> > q; void addedge(int x,int y,int w)
{
nxt[++cnt]=point[x];
to[cnt]=y;
val[cnt]=w;
point[x]=cnt;
} int c; void dijkstra(int s)
{
memset(dis,127/3,sizeof(dis));
memset(vis,0,sizeof(vis));
dis[s]=0;
q.push(make_pair(0,s));
while (!q.empty())
{
int x = q.top().second;
q.pop();
if (vis[x]) continue;
vis[x]=1;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (dis[p]>dis[x]+val[i])
{
dis[p]=dis[x]+val[i];
q.push(make_pair(dis[p],p));
}
}
}
} int main()
{
scanf("%d%d%d",&n,&m,&c);
for (int i=1;i<=m;++i)
{
int x=read(),y=read(),w=read();
addedge(x,y,w);
}
for (int i=0;i<=n;++i)
{
for (int j=1;j<=n;j<<=1)
{
int tmp = (i^j);
if (tmp>n) continue;
addedge(i,tmp,j*c);
}
}
cin>>s>>t;
dijkstra(s);
cout<<dis[t]<<endl;
return 0;
}

洛谷4366——最短路(dijkstra,思维,异或)的更多相关文章

  1. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

  2. 洛谷 1144 最短路计数 bfs

    洛谷1144 最短路计数 传送门 其实这道题目的正解应该是spfa里面加一些处理,,然而,,然而,,既然它是无权图,,那么就直接bfs了,用一个cnt记录一下每一个点的方案数,分几种情况讨论一下转移, ...

  3. 洛谷 P2384 最短路

    洛谷 P2384 最短路 题目背景 狗哥做烂了最短路,突然机智的考了Bosh一道,没想到把Bosh考住了...你能帮Bosh解决吗? 他会给你10000000000000000000000000000 ...

  4. 洛谷2483 k短路([SDOI2010]魔法猪学院)

    题目请戳这里 一句话题意: 给你一张n个节点,m条单向边的图,求1到n第k短的路. emmm,纪念第一个黑题(我是真的菜啊!!) 这题目还是很难的,本蒟蒻只会被洛谷卡掉的A(所以就愉快地特判了),首先 ...

  5. 洛谷P2384 最短路(dijkstra解法)

    题目背景 狗哥做烂了最短路,突然机智的考了Bosh一道,没想到把Bosh考住了...你能帮Bosh解决吗? 他会给你100000000000000000000000000000000000%10金币w ...

  6. 洛谷P1144 最短路计数【堆优化dijkstra】

    题目:https://www.luogu.org/problemnew/show/P1144 题意:问1到各个节点的最短路有多少条. 思路:如果松弛的时候发现是相等的,说明可以经过该点的最短路径到达当 ...

  7. LOJ6354 & 洛谷4366:[Code+#4]最短路——题解

    https://loj.ac/problem/6354 https://www.luogu.org/problemnew/show/P4366 题面见上面. 这题很妙,且可能是我傻,感觉这题不太好想. ...

  8. 洛谷 P1144 最短路计数 Label:水

    题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶点数与边数. 接下来M行 ...

  9. 洛谷 P1144 最短路计数

    传送门:https://www.luogu.org/problemnew/show/P1144 这虽然是一道普及+的题,然而我发现我现在还没做过,这也就直接导致我今天模拟T2只杠了个暴力分…… 那这道 ...

随机推荐

  1. Sentinel限流、降级配置详解

    安装Sentinel 下载sentinel-dashboard-1.8.2.jar 安装有jdk环境,8080端口未被占用 在jar包所在目录打开cmd,输入命令启动:java -jar sentin ...

  2. Go初始化二维数组

    初始化二维数组 var a = make([][]int, n) for i := 0; i < n; i++ { a[i] = make([]int, n) }

  3. MySQL——优化

    MySQL数据库优化: 1.优化角度 安全: 数据可持续性 性能: 数据的高性能访问 2.优化范围(优化顺序---->) (1)存储.主机和操作系统: 主机架构稳定性 I/O规划及配置 swap ...

  4. Java日期时间API系列42-----一种高效的中文日期格式化和解析方法

    中文日期(2021年09月11日 和 二〇二一年九月十一日 )在生活中经常用到,2021年09月11日很好处理直接使用模板:yyyy年MM月dd日:二〇二一年九月十一日比较不好处理,需要每个数字进行转 ...

  5. Tars | 第8篇 TarsJava Subset最终代码的执行流程与原理分析

    目录 前言 1. SubsetConf配置项的结构 1.1 SubsetConf 1.2 RatioConfig 1.3 KeyConfig 1.4 KeyRoute 1.5 SubsetConf的结 ...

  6. [CSP-J2020] 优秀的拆分

    [CSP-J2020] 优秀的拆分 难度:普及- 题目描述 一般来说,一个正整数可以拆分成若干个正整数的和. 例如,1=1,10=1+2+3+4 等.对于正整数 n 的一种特定拆分,我们称它为&quo ...

  7. 如何快速下载ubuntu镜像

    使用国内镜像地址下载: 中科大http://mirrors.ustc.edu.cn/ubuntu-releases/ 阿里云开源镜像站http://mirrors.aliyun.com/ubuntu- ...

  8. javascript wchar_t 宽字符 转化为 ascii字符码数组

    String.prototype.charCodeAt String.fromCharCode() String.prototype.toUtfArray = function() { return ...

  9. Vue 初学

    Vue 的基本代码:      概念简介:Vue.js 是目前最火的一个前端框架,只关注视图层,主要负责MVC中的V这一层     MVC 是后端的分层开发概念:     MVVM是前端视图层的概念, ...

  10. YbtOJ#732-斐波那契【特征方程,LCT】

    正题 题目链接:http://www.ybtoj.com.cn/contest/125/problem/2 题目大意 给出\(n\)个点的一棵树,以\(1\)为根,每个点有点权\(a_i\).要求支持 ...