hdu 3306 Another kind of Fibonacci 矩阵快速幂
参考了某大佬的
我们可以根据(s[n-2], a[n-1]^2, a[n-1]*a[n-2], a[n-2]^2) * A = (s[n-1], a[n]^2, a[n]*a[n-1], a[n-1]^2)
能够求出关系矩阵
|1 0 0 0 |
A = |1 x^2 x 1 |
|0 2*x*y y 0 |
|0 y^2 0 0 |
这样就A了!
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long ll;
const ll Mod = 10007;
const int N = 5;
int msize; struct Mat
{
ll mat[N][N];
}; Mat operator *(Mat a, Mat b)
{
Mat c;
memset(c.mat, 0, sizeof(c.mat));
for(int k = 0; k < msize; ++k)
for(int i = 0; i < msize; ++i)
if(a.mat[i][k])
for(int j = 0; j < msize; ++j)
if(b.mat[k][j])
c.mat[i][j] = (a.mat[i][k] * b.mat[k][j] + c.mat[i][j])%Mod;
return c;
} Mat operator ^(Mat a, ll k)
{
Mat c;
memset(c.mat,0,sizeof(c.mat));
for(int i = 0; i < msize; ++i)
c.mat[i][i]=1;
for(; k; k >>= 1)
{
if(k&1) c = c*a;
a = a*a;
}
return c;
} int main()
{
ll n,x,y;
msize = 4;
while(~scanf("%I64d%I64d%I64d",&n,&x,&y))
{
Mat A;
A.mat[0][0] = 1, A.mat[0][1] = 1, A.mat[0][2] = 0, A.mat[0][3] = 0;
A.mat[1][0] = 0, A.mat[1][1] = x*x%Mod, A.mat[1][2] = 2*x*y%Mod, A.mat[1][3] = y*y%Mod;
A.mat[2][0] = 0, A.mat[2][1] = x, A.mat[2][2] = y, A.mat[2][3] = 0;
A.mat[3][0] = 0, A.mat[3][1] = 1, A.mat[3][2] = 0, A.mat[3][3] = 0;
A = A^n;
printf("%I64d\n", (A.mat[0][0] + A.mat[0][1] + A.mat[0][2] + A.mat[0][3])%Mod);
}
return 0;
}
hdu 3306 Another kind of Fibonacci 矩阵快速幂的更多相关文章
- HDU 3306 Another kind of Fibonacci(矩阵+ll超时必须用int&输入必须取模&M必须是int类型)
Another kind of Fibonacci [题目链接]Another kind of Fibonacci [题目类型]矩阵+ll超时必须用int&输入必须取模&M必须是int ...
- HDU 1588 Gauss Fibonacci(矩阵快速幂)
Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 2855 斐波那契+矩阵快速幂
http://acm.hdu.edu.cn/showproblem.php?pid=2855 化简这个公式,多写出几组就会发现规律 d[n]=F[2*n] 后面的任务就是矩阵快速幂拍一个斐波那契模板出 ...
- HDU 5950:Recursive sequence(矩阵快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:给出 a,b,n,递推出 f(n) = f(n-1) + f(n-2) * 2 + n ^ 4. f ...
- poj 3070 Fibonacci (矩阵快速幂乘/模板)
题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...
- poj 3070 Fibonacci 矩阵快速幂
Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...
- HDU 3292 【佩尔方程求解 && 矩阵快速幂】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=3292 No more tricks, Mr Nanguo Time Limit: 3000/1000 M ...
- HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...
- hdu 4565 So Easy! (共轭构造+矩阵快速幂)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 题目大意: 给出a,b,n,m,求出的值, 解题思路: 因为题目中出现了开根号,和向上取整后求 ...
随机推荐
- dmesg -w 查看硬件参数
dmesg -w 查看硬件参数 14,笔记本硬件问题,使用dmesg -w可以看到,内核不断受到硬件过来的热插拔信号
- centos7 启动docker失败
现象:Centos7.3通过yum安装完docker后,启动docker失败 机器的系统版本:CentOS Linux release 7.3.1611 (Core) centos7,执行完安装命令: ...
- .NET Worker Service 添加 Serilog 日志记录
前面我们了解了 .NET Worker Service 的入门知识[1] 和 如何优雅退出 Worker Service [2],今天我们接着介绍一下如何为 Worker Service 添加 Ser ...
- synchronized 的超多干货!
前言 synchronized 这个关键字的重要性不言而喻,几乎可以说是并发.多线程必须会问到的关键字了.synchronized 会涉及到锁.升级降级操作.锁的撤销.对象头等.所以理解 synchr ...
- Zabbix企业分布式监控工具
前言:在工作中常常需要对服务器进行监控,但是要选择一款合适监控软件可不容易,今天介绍下zabbix这款监控软件 一.Zabbix介绍1.Zabbix是一个企业级的.开源的.分布式的监控套件2.Zabb ...
- CAP理论之思考
分布式系统的最大难点就是各个节点如何保持一致.最近我在工作中就遇到这样的问题,不同节点之间,彼此通过API,进行通信,交互数据,但有些服务节点存在延迟等问题,导致我看到的并不是实时的数据,以及系统更新 ...
- Halide视觉神经网络优化
Halide视觉神经网络优化 概述 Halide是用C++作为宿主语言的一个图像处理相关的DSL(Domain Specified Language)语言,全称领域专用语言.主要的作用为在软硬层面上( ...
- 用NVIDIA Tensor Cores和TensorFlow 2加速医学图像分割
用NVIDIA Tensor Cores和TensorFlow 2加速医学图像分割 Accelerating Medical Image Segmentation with NVIDIA Tensor ...
- 绘制log()函数图像,并在图上标注选定的两个点
绘制log()函数图像,并在图上标注选定的两个点 import math import matplotlib.pyplot as plt if __name__ == '__main__': x = ...
- dataguard日志损坏处理
===== 问题 ===== 日志损坏无法应用日志(开启MRP应用系统会因无法应用日志而关闭) Completed: ALTER DATABASE RECOVER MANAGED STANDBY DA ...