参考了某大佬的

我们可以根据(s[n-2], a[n-1]^2, a[n-1]*a[n-2], a[n-2]^2) * A = (s[n-1], a[n]^2, a[n]*a[n-1], a[n-1]^2)

能够求出关系矩阵

|1     0      0     0 |
A =   |1   x^2    x     1 |
        |0  2*x*y  y     0 |
        |0   y^2    0     0 |

这样就A了!

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long ll;
const ll Mod = 10007;
const int N = 5;
int msize; struct Mat
{
ll mat[N][N];
}; Mat operator *(Mat a, Mat b)
{
Mat c;
memset(c.mat, 0, sizeof(c.mat));
for(int k = 0; k < msize; ++k)
for(int i = 0; i < msize; ++i)
if(a.mat[i][k])
for(int j = 0; j < msize; ++j)
if(b.mat[k][j])
c.mat[i][j] = (a.mat[i][k] * b.mat[k][j] + c.mat[i][j])%Mod;
return c;
} Mat operator ^(Mat a, ll k)
{
Mat c;
memset(c.mat,0,sizeof(c.mat));
for(int i = 0; i < msize; ++i)
c.mat[i][i]=1;
for(; k; k >>= 1)
{
if(k&1) c = c*a;
a = a*a;
}
return c;
} int main()
{
ll n,x,y;
msize = 4;
while(~scanf("%I64d%I64d%I64d",&n,&x,&y))
{
Mat A;
A.mat[0][0] = 1, A.mat[0][1] = 1, A.mat[0][2] = 0, A.mat[0][3] = 0;
A.mat[1][0] = 0, A.mat[1][1] = x*x%Mod, A.mat[1][2] = 2*x*y%Mod, A.mat[1][3] = y*y%Mod;
A.mat[2][0] = 0, A.mat[2][1] = x, A.mat[2][2] = y, A.mat[2][3] = 0;
A.mat[3][0] = 0, A.mat[3][1] = 1, A.mat[3][2] = 0, A.mat[3][3] = 0;
A = A^n;
printf("%I64d\n", (A.mat[0][0] + A.mat[0][1] + A.mat[0][2] + A.mat[0][3])%Mod);
}
return 0;
}

hdu 3306 Another kind of Fibonacci 矩阵快速幂的更多相关文章

  1. HDU 3306 Another kind of Fibonacci(矩阵+ll超时必须用int&输入必须取模&M必须是int类型)

    Another kind of Fibonacci [题目链接]Another kind of Fibonacci [题目类型]矩阵+ll超时必须用int&输入必须取模&M必须是int ...

  2. HDU 1588 Gauss Fibonacci(矩阵快速幂)

    Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) ...

  3. HDU 2855 斐波那契+矩阵快速幂

    http://acm.hdu.edu.cn/showproblem.php?pid=2855 化简这个公式,多写出几组就会发现规律 d[n]=F[2*n] 后面的任务就是矩阵快速幂拍一个斐波那契模板出 ...

  4. HDU 5950:Recursive sequence(矩阵快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:给出 a,b,n,递推出 f(n) = f(n-1) + f(n-2) * 2 + n ^ 4. f ...

  5. poj 3070 Fibonacci (矩阵快速幂乘/模板)

    题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...

  6. poj 3070 Fibonacci 矩阵快速幂

    Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...

  7. HDU 3292 【佩尔方程求解 && 矩阵快速幂】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=3292 No more tricks, Mr Nanguo Time Limit: 3000/1000 M ...

  8. HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...

  9. hdu 4565 So Easy! (共轭构造+矩阵快速幂)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 题目大意: 给出a,b,n,m,求出的值, 解题思路: 因为题目中出现了开根号,和向上取整后求 ...

随机推荐

  1. dmesg -w 查看硬件参数

    dmesg -w 查看硬件参数 14,笔记本硬件问题,使用dmesg -w可以看到,内核不断受到硬件过来的热插拔信号

  2. centos7 启动docker失败

    现象:Centos7.3通过yum安装完docker后,启动docker失败 机器的系统版本:CentOS Linux release 7.3.1611 (Core) centos7,执行完安装命令: ...

  3. .NET Worker Service 添加 Serilog 日志记录

    前面我们了解了 .NET Worker Service 的入门知识[1] 和 如何优雅退出 Worker Service [2],今天我们接着介绍一下如何为 Worker Service 添加 Ser ...

  4. synchronized 的超多干货!

    前言 synchronized 这个关键字的重要性不言而喻,几乎可以说是并发.多线程必须会问到的关键字了.synchronized 会涉及到锁.升级降级操作.锁的撤销.对象头等.所以理解 synchr ...

  5. Zabbix企业分布式监控工具

    前言:在工作中常常需要对服务器进行监控,但是要选择一款合适监控软件可不容易,今天介绍下zabbix这款监控软件 一.Zabbix介绍1.Zabbix是一个企业级的.开源的.分布式的监控套件2.Zabb ...

  6. CAP理论之思考

    分布式系统的最大难点就是各个节点如何保持一致.最近我在工作中就遇到这样的问题,不同节点之间,彼此通过API,进行通信,交互数据,但有些服务节点存在延迟等问题,导致我看到的并不是实时的数据,以及系统更新 ...

  7. Halide视觉神经网络优化

    Halide视觉神经网络优化 概述 Halide是用C++作为宿主语言的一个图像处理相关的DSL(Domain Specified Language)语言,全称领域专用语言.主要的作用为在软硬层面上( ...

  8. 用NVIDIA Tensor Cores和TensorFlow 2加速医学图像分割

    用NVIDIA Tensor Cores和TensorFlow 2加速医学图像分割 Accelerating Medical Image Segmentation with NVIDIA Tensor ...

  9. 绘制log()函数图像,并在图上标注选定的两个点

    绘制log()函数图像,并在图上标注选定的两个点 import math import matplotlib.pyplot as plt if __name__ == '__main__': x = ...

  10. dataguard日志损坏处理

    ===== 问题 ===== 日志损坏无法应用日志(开启MRP应用系统会因无法应用日志而关闭) Completed: ALTER DATABASE RECOVER MANAGED STANDBY DA ...