hdu 3306 Another kind of Fibonacci 矩阵快速幂
参考了某大佬的
我们可以根据(s[n-2], a[n-1]^2, a[n-1]*a[n-2], a[n-2]^2) * A = (s[n-1], a[n]^2, a[n]*a[n-1], a[n-1]^2)
能够求出关系矩阵
|1 0 0 0 |
A = |1 x^2 x 1 |
|0 2*x*y y 0 |
|0 y^2 0 0 |
这样就A了!
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long ll;
const ll Mod = 10007;
const int N = 5;
int msize; struct Mat
{
ll mat[N][N];
}; Mat operator *(Mat a, Mat b)
{
Mat c;
memset(c.mat, 0, sizeof(c.mat));
for(int k = 0; k < msize; ++k)
for(int i = 0; i < msize; ++i)
if(a.mat[i][k])
for(int j = 0; j < msize; ++j)
if(b.mat[k][j])
c.mat[i][j] = (a.mat[i][k] * b.mat[k][j] + c.mat[i][j])%Mod;
return c;
} Mat operator ^(Mat a, ll k)
{
Mat c;
memset(c.mat,0,sizeof(c.mat));
for(int i = 0; i < msize; ++i)
c.mat[i][i]=1;
for(; k; k >>= 1)
{
if(k&1) c = c*a;
a = a*a;
}
return c;
} int main()
{
ll n,x,y;
msize = 4;
while(~scanf("%I64d%I64d%I64d",&n,&x,&y))
{
Mat A;
A.mat[0][0] = 1, A.mat[0][1] = 1, A.mat[0][2] = 0, A.mat[0][3] = 0;
A.mat[1][0] = 0, A.mat[1][1] = x*x%Mod, A.mat[1][2] = 2*x*y%Mod, A.mat[1][3] = y*y%Mod;
A.mat[2][0] = 0, A.mat[2][1] = x, A.mat[2][2] = y, A.mat[2][3] = 0;
A.mat[3][0] = 0, A.mat[3][1] = 1, A.mat[3][2] = 0, A.mat[3][3] = 0;
A = A^n;
printf("%I64d\n", (A.mat[0][0] + A.mat[0][1] + A.mat[0][2] + A.mat[0][3])%Mod);
}
return 0;
}
hdu 3306 Another kind of Fibonacci 矩阵快速幂的更多相关文章
- HDU 3306 Another kind of Fibonacci(矩阵+ll超时必须用int&输入必须取模&M必须是int类型)
Another kind of Fibonacci [题目链接]Another kind of Fibonacci [题目类型]矩阵+ll超时必须用int&输入必须取模&M必须是int ...
- HDU 1588 Gauss Fibonacci(矩阵快速幂)
Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 2855 斐波那契+矩阵快速幂
http://acm.hdu.edu.cn/showproblem.php?pid=2855 化简这个公式,多写出几组就会发现规律 d[n]=F[2*n] 后面的任务就是矩阵快速幂拍一个斐波那契模板出 ...
- HDU 5950:Recursive sequence(矩阵快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:给出 a,b,n,递推出 f(n) = f(n-1) + f(n-2) * 2 + n ^ 4. f ...
- poj 3070 Fibonacci (矩阵快速幂乘/模板)
题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...
- poj 3070 Fibonacci 矩阵快速幂
Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...
- HDU 3292 【佩尔方程求解 && 矩阵快速幂】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=3292 No more tricks, Mr Nanguo Time Limit: 3000/1000 M ...
- HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...
- hdu 4565 So Easy! (共轭构造+矩阵快速幂)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 题目大意: 给出a,b,n,m,求出的值, 解题思路: 因为题目中出现了开根号,和向上取整后求 ...
随机推荐
- Linux Centos7设置UTF-8编码,防止中文乱码
Linux Centos7设置UTF-8编码,防止中文乱码 # localeLANG=zh_CN.gb2312LC_CTYPE="zh_CN.gb2312"LC_NUMERIC=& ...
- CentOS7中下载RPM及其所有的依赖包
CentOS7中下载RPM及其所有的依赖包 转载beeworkshop 最后发布于2019-09-28 07:43:40 阅读数 1096 收藏 展开 利用 Downloadonly 插件下载 RP ...
- Installing SFTP/SSH Server on Windows using OpenSSH
Installing SFTP/SSH Server 1. On Windows 10 version 1803 and newer In Settings app, go to Apps > ...
- 分布式存储ceph---ceph osd 故障硬盘更换(6)
正常状态: 故障状态: 实施更换步骤: 1.关闭ceph集群数据迁移: osd硬盘故障,状态变为down.在经过mod osd down out interval 设定的时间间隔后,ceph将其标记为 ...
- 003.kubernets对于namespace的管理
一 Kuberbetes的架构简单介绍 1.1 云计算的传统分类 1.2 kubernetes基础架构 工作机制 用户通过kubectl向api-server提交需要运行的pod描述 api-serv ...
- 2.7循环_while
循环 目标 程序的三大流程 while 循环基本使用 break 和 continue while 循环嵌套 01. 程序的三大流程 在程序开发中,一共有三种流程方式: 顺序 -- 从上向下,顺序执行 ...
- wait 和waitpid函数对比-(转自 wintree)
Wait和waipid函数 当一个进程正常或异常终止的时候,内核就像其父进程发送SIGCHLD信号,因为子进程是个一步事件,所以这种信号也是内核系那个父进程发的异步通知.父进程可以选择忽略该信号,或者 ...
- Flink-cdc实时读postgresql
由于公司业务需要,需要实时同步pgsql数据,我们选择使用flink-cdc方式进行 架构图: 前提步骤: 1,更改配置文件postgresql.conf # 更改wal日志方式为logicalwal ...
- sublime使用与配置
目录 Download Markdown转浏览器显示 1. 简单版本 2. 有MD全格式版本 Install Package Control 删除文本空行 1. Ctrl + H 2. Find \s ...
- SLAM图优化g2o
SLAM图优化g2o 图优化g2o框架 图优化的英文是 graph optimization 或者 graph-based optimization, "图"其实是数据结构中的gr ...