\(\mathcal{Description}\)

  Link.

  给定 \(n\) 个点 \(m\) 条边的连通无向图 \(G\),边有边权。其中 \(u,v\) 的距离 \(d(u,v)\) 定义为 \(u\) 到 \(v\) 的最大异或路径。还有 \(q\) 次询问,每次给出 \(l,r\),求 \(\bigoplus_{l\le i<j\le r}d(i,j)\)。

  \(n,m,q\le10^5\),边权 \(w<2^{30}\)。

\(\mathcal{Solution}\)

  首先必然套用这个经典永流传的结论:设所有环的异或和构成空间 \(V\),\(d'(u,v)\) 为 \(u\) 到 \(v\) 的任意一条路径的异或和,则 \(d(u,v)=\max\{d'(u,v)\oplus x\mid x\in V\}\)。

  记变换 \(F_V:x\rightarrow \max\{x\oplus v\mid v\in V\}\),由于它不具有线性性,我们拆开 \(d(u,v)\) 的 \(\max\) 进行优化就显得困难。不过,考查与之类似的另一个变换 \(G_V:x\rightarrow\min\{x\oplus v\mid v\in V\}\),能够证明 \(G_V\) 是线性变换,且会得到一个炫酷的结论:\(F_V(x)=G_V(x)\oplus\max\{v\mid v\in V\}\)。

证明

  把 $x$ 等元素视为 $U=\{0,1\}^k$ 下的向量。设 $\boldsymbol x=\begin{pmatrix}x_0& x_1&\cdots& x_{k-1}\end{pmatrix}$,取 $U$ 的子空间 $V$ 的线性基 $\mathcal B$,令
$$
\mathcal B=\begin{pmatrix}\boldsymbol b_0\\ \boldsymbol b_1\\ \vdots \\ \boldsymbol b_{k-1}\end{pmatrix},
$$
其中 $\boldsymbol b_i=\begin{pmatrix} b_{i,0} & b_{i,1}&\cdots& b_{i,k-1} \end{pmatrix}$,且有 $\forall j\lt i,b_{i,j}=0$。此时考虑 $\boldsymbol x\mathcal B^T$ 的意义:若 $\boldsymbol x$ 某一分量为 $1$,则加上(即异或上)线性基中的对应向量,很显然就是在线性基中构造 $\min\{x\oplus v\mid v\in V\}$ 的方式,所以 $G_V$ 是一个线性变换。 $\square$

  “炫酷结论”就不证了,自证不难。

  回到题目,处理一下式子:

\[\begin{aligned}\bigoplus_{l\le i<j\le r}d(i,j) &= \bigoplus_{l\le i<j\le r}d'(i,j)\oplus G_V(d'(i,j))\oplus \max\{v\mid v\in V\}\\&= \left(\binom{r-l+1}{2}\otimes\max\{v\mid v\in V\}\right)\oplus G_V\left( \bigoplus_{l\le i<j\le r}d'(i,j) \right).\end{aligned}
\]

抵消掉大量重复异或之后直接计算即可。复杂度 \(\mathcal O(n+(m+q)\log w)\)。

\(\mathcal{Code}\)

/*~Rainybunny*/

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) const int MAXN = 1e5;
int n, m, q, ecnt, head[MAXN + 5], dis[MAXN + 5];
bool vis[MAXN + 5]; struct Edge { int to, val, nxt; } graph[MAXN * 2 + 5]; struct XorLinearBasic {
static const int W = 30;
int bas[W]; inline void insert( int v ) {
per ( i, W, 0 ) if ( v >> i & 1 ) {
if ( !bas[i] ) return void( bas[i] = v );
v ^= bas[i];
}
} inline int ask( int v, const bool tar ) {
per ( i, W, 0 ) if ( ( v >> i & 1 ) != tar ) v ^= bas[i];
return v;
}
} xlb; inline void link( const int u, const int v, const int w ) {
graph[++ecnt] = { v, w, head[u] }, head[u] = ecnt;
graph[++ecnt] = { u, w, head[v] }, head[v] = ecnt;
} inline void getCir( const int u ) {
vis[u] = true;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( vis[v = graph[i].to] ) {
xlb.insert( dis[u] ^ dis[v] ^ graph[i].val );
} else {
dis[v] = dis[u] ^ graph[i].val, getCir( v );
}
}
} int main() {
std::ios::sync_with_stdio( false ), std::cin.tie( 0 ); std::cin >> n >> m >> q;
rep ( i, 1, m ) {
int u, v, w; std::cin >> u >> v >> w;
link( u, v, w );
} getCir( 1 );
rep ( i, 1, n ) dis[i] ^= dis[i - 1]; for ( int l, r; q--; ) {
std::cin >> l >> r;
std::cout << xlb.ask( ( r - l ) & 1 ? dis[r] ^ dis[l - 1] : 0,
( r - l + 1ll ) * ( r - l ) >> 1 & 1 ) << '\n';
}
return 0;
}

Solution -「Gym 102956F」Find the XOR的更多相关文章

  1. Solution -「Gym 102956F」Border Similarity Undertaking

    \(\mathcal{Description}\)   Link.   给定一张 \(n\times m\) 的表格,每个格子上写有一个小写字母.求其中长宽至少为 \(2\),且边界格子上字母相同的矩 ...

  2. Solution -「Gym 102979E」Expected Distance

    \(\mathcal{Description}\)   Link.   用给定的 \(\{a_{n-1}\},\{c_n\}\) 生成一棵含有 \(n\) 个点的树,其中 \(u\) 连向 \([1, ...

  3. Solution -「Gym 102979L」 Lights On The Road

    \(\mathcal{Description}\)   Link.   给定序列 \(\{w_n\}\),选择 \(i\) 位置的代价为 \(w_i\),要求每个位置要不被选择,要不左右两个位置至少被 ...

  4. Solution -「Gym 102956B」Beautiful Sequence Unraveling

    \(\mathcal{Description}\)   Link.   求长度为 \(n\),值域为 \([1,m]\) 的整数序列 \(\lang a_n\rang\) 的个数,满足 \(\not\ ...

  5. Solution -「Gym 102956A」Belarusian State University

    \(\mathcal{Description}\)   Link.   给定两个不超过 \(2^n-1\) 次的多项式 \(A,B\),对于第 \(i\in[0,n)\) 个二进制位,定义任意一个二元 ...

  6. Solution -「Gym 102798I」Sean the Cuber

    \(\mathcal{Description}\)   Link.   给定两个可还原的二阶魔方,求从其中一个状态拧到另一个状态的最小步数.   数据组数 \(T\le2.5\times10^5\). ...

  7. Solution -「Gym 102798K」Tree Tweaking

    \(\mathcal{Description}\)   Link.   给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树 ...

  8. Solution -「Gym 102798E」So Many Possibilities...

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{a_n\}\) 和 \(m\),每次随机在 \(\{a\}\) 中取一个非零的 \(a_i\)(保证存 ...

  9. Solution -「Gym 102759I」Query On A Tree 17

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个结点的树,结点 \(1\) 为根,点 \(u\) 初始有点权 \(a_u=0\),维护 \(q\) 次 ...

随机推荐

  1. VMware桥接模式连接局域网和互联网

    第一步:确认本地网关地址 第二步选择桥接模式: 我比较幸运,桥接到"自动",就已经连接成功.不用逐个试错. 修改 ifcfg-ens33 和 新建 ifcfg-br0 [root@ ...

  2. Python常用功能函数系列总结(六)

    本节目录 常用函数一:词云图 常用函数二:关键词清洗 常用函数三:中英文姓名转换  常用函数四:去除文本中的HTML标签和文本清洗 常用函数一:词云图 wordcloud # -*- coding: ...

  3. ES6常用知识点

    一.变量 var:定义的变量有时候会成为全局变量 let:定义的变量严格,只在代码块内有效 const:声明的变量是常量,不能被修改 二.数据类型 字符串 @定义:~字符串定义标记,支持换行.  #常 ...

  4. 网络协议学习笔记(八)DNS协议和HttpDNS协议

    概述 上一篇主要讲解了流媒体协议和p2p协议,现在我给大家讲解一下关于DNS和HttpDNS的相关知识. DNS协议:网络世界的地址簿 在网络世界,也是这样的.你肯定记得住网站的名称,但是很难记住网站 ...

  5. 网络协议学习笔记(七)流媒体协议和P2P协议

    概述 上一篇讲解了http和https的协议的相关的知识,现在我们谈一下流媒体协议和P2P协议. 流媒体协议:如何在直播里看到美女帅哥 最近直播比较火,很多人都喜欢看直播,那一个直播系统里面都有哪些组 ...

  6. Apache Shiro反序列化远程代码执行复现

    最近也是看shiro漏洞比较多,所以自己也在本地复现了一下,拿出来与大家一起分享 0x00 关于Apache Shiro Apache shiro是一个Java安全框架,提供了认证.授权.加密和会话管 ...

  7. 一文看懂B端产品和C端产品

    大纲 什么是B端产品 什么是C端产品 为什么会产生B端产品和C端产品 怎么判断一个产品是B端还是C端 B端产品和C端产品存在哪些差异 C端产品经理如何向B端产品经理转型 写在最后   什么是B, Bu ...

  8. 关于在Vue中使用WebScoket的随笔

    声明:请勿直接复制粘贴抄袭文章,若有需要,请规范转载,注明出处,谢谢! ---------------------------------------------------------------- ...

  9. Python科学计算类库

    Numpy是什么 Numpy是一个开源的Python科学计算库.使用Numpy,就可以很自然地使用数组和矩阵.Numpy包含很多实用的数学函数,涵盖线性代数运算.傅里叶变换和随机数生成等功能. 矩阵: ...

  10. day3 创建数组并完成对数组的操作

    1.实现函数action()初始化数据全0的操作 2.实现函数assignment()利用指针给数组赋值0~9 3.实现函数print()打印数组的每个函数 4.实现函数reverse()完成对数组的 ...