Solution -「Code+#4」「洛谷 P4370」组合数问题 2
\(\mathcal{Description}\)
Link.
给定 \(n,k\),求 \(0\le b\le a\le n\) 的 \(\binom{a}{b}\) 的前 \(k\) 大。
\(n\le10^6\),\(k\le10^5\)。
\(\mathcal{Solution}\)
注意到 \(\binom{a}{b}<\binom{a+1}{b}\),所以把 \(\binom{n}i\) 塞进堆里,取走堆顶的 \(\binom{a}{b}\) 时顺手把 \(\binom{a-1}b\) 入堆就好。
但组合数直接算会爆精度,取对数就能实现比较了。
\(\mathcal{Code}\)
#include <cmath>
#include <queue>
#include <cstdio>
typedef std::pair<int, int> pii;
const int MAXN = 1e6, MOD = 1e9 + 7;
int n, K, nfac[MAXN + 5], ifac[MAXN + 5];
double lfac[MAXN + 5];
inline double combl ( const int n, const int m ) {
return lfac[n] - lfac[m] - lfac[n - m];
}
inline int combn ( const int n, const int m ) {
return 1ll * nfac[n] * ifac[m] % MOD * ifac[n - m] % MOD;
}
inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
}
struct cmp {
inline bool operator () ( const pii a, const pii b ) {
return combl ( a.first, a.second ) < combl ( b.first, b.second );
}
};
std::priority_queue<pii, std::vector<pii>, cmp> heap;
int main () {
scanf ( "%d %d", &n, &K );
nfac[0] = nfac[1] = 1;
for ( int i = 2; i <= n; ++ i ) {
lfac[i] = lfac[i - 1] + log2 ( i );
nfac[i] = 1ll * i * nfac[i - 1] % MOD;
}
ifac[n] = qkpow ( nfac[n], MOD - 2 );
for ( int i = n - 1; ~ i; -- i ) ifac[i] = ( i + 1ll ) * ifac[i + 1] % MOD;
for ( int i = 0; i <= n; ++ i ) heap.push ( { n, i } );
int ans = 0;
while ( K -- ) {
pii t = heap.top (); heap.pop ();
ans = ( ans + combn ( t.first, t.second ) ) % MOD;
if ( t.first && t.first ^ t.second ) heap.push ( { t.first - 1, t.second } );
}
printf ( "%d\n", ans );
return 0;
}
Solution -「Code+#4」「洛谷 P4370」组合数问题 2的更多相关文章
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\time ...
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Solution -「POI 2010」「洛谷 P3511」MOS-Bridges
\(\mathcal{Description}\) Link.(洛谷上这翻译真的一言难尽呐. 给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...
- Solution -「APIO 2016」「洛谷 P3643」划艇
\(\mathcal{Description}\) Link & 双倍经验. 给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...
- 「洛谷P1516」 青蛙的约会
洛谷题号:P1516 出处:? 主要算法:数论 难度:4.4 思路分析: 典型的同余方程.由于是纬线,绕一圈是可以绕回来的,所以是可以取模的. 阅读题目,很容易得到同余方程$ x + tm ≡ y + ...
- 「BZOJ1038」「洛谷P2600」「ZJOI2008」瞭望塔 半平面交+贪心
题目链接 BZOJ/洛谷 题目描述 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安. 我们将H村抽象为一维的轮廓.如下图所示: 我们可以用一条山的上方 ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
随机推荐
- github 创建网络仓库 ,使用git工具将本地文件上传/删除 --- 心得
1.前言 使用 git做项目控制版本工具,当然,使用SVN也可以,但是,git让人感觉更先进一些,与GitHub结合,用起来很方便,服务端由官网控制. 而SVN分客户端和服务端,都是个人控制,因此, ...
- POJ2115C Looooops
http://poj.org/problem?id=2115 k位储存特点,一旦溢出,那么就到第二个循环开始返回0重新计数.问题实际转化成a+cx=b(mod 2^k)跑多少圈能够重合.因为是k位无符 ...
- SYCOJ157乘二加一
题目-乘二加一 (shiyancang.cn) 递归写法 #include <bits/stdc++.h> using namespace std; string f(int n) { i ...
- lua中的三目运算符
开头先说结论 1.简单版三目运算符(需要自我保证"b"不为"false") a and b or c 2.通用版三目运算符 (a and {b} or {c}) ...
- 听说你想在 WordPress 网站上嵌入 PPT ?
年底了,想在 WordPress 博客上展示自己的春节旅行计划,尝试在文章中插入一个旅行计划 PPT 结果长这个样子 你有没有遇到同样的情况,懊恼网页支持展示的内容无法满足我们的需求: 想展示年度家庭 ...
- orleans集群及负载均衡实现
netcore6项目,微服务框架选orleans ,国内似乎没什么项目在用,坑多无资料.orleans文档可以解决几乎,只能看官方资料. Introduction | Microsoft Orlean ...
- Windows 和 Ubuntu 的网络能互相 ping 通之后,linux无法上网原因:①路由没设置好,②DNS 没设置好
确保 Windows 和 Ubuntu 的网络能互相 ping 通之后,如果 Ubuntu 无法上网,原因通常有 2 个:路由没设置好,DNS 没设置好. 如果执行以下命令不成功,表示路由没设置好: ...
- ES6随笔D1
1.数值解构赋值 ES6 允许按照一定模式,可以从数组中提取值,按照对应位置,对变量赋值,这被称为解构. 解构赋值的规则是,只要等号右边的值不是对象或数组,就先将其转为对象.由于undefined和n ...
- 【失败经验分享】android下使用支持opencl的cv::dft()
1.使用了UMat,但是并未使用GPU计算 cv::dft()函数的定义是: void cv::dft( InputArray _src0, OutputArray _dst, int flags, ...
- cesium结合geoserver利用WFS服务实现图层删除(附源码下载)
前言 cesium 官网的api文档介绍地址cesium官网api,里面详细的介绍 cesium 各个类的介绍,还有就是在线例子:cesium 官网在线例子,这个也是学习 cesium 的好素材. 内 ...