Solution -「Code+#4」「洛谷 P4370」组合数问题 2
\(\mathcal{Description}\)
Link.
给定 \(n,k\),求 \(0\le b\le a\le n\) 的 \(\binom{a}{b}\) 的前 \(k\) 大。
\(n\le10^6\),\(k\le10^5\)。
\(\mathcal{Solution}\)
注意到 \(\binom{a}{b}<\binom{a+1}{b}\),所以把 \(\binom{n}i\) 塞进堆里,取走堆顶的 \(\binom{a}{b}\) 时顺手把 \(\binom{a-1}b\) 入堆就好。
但组合数直接算会爆精度,取对数就能实现比较了。
\(\mathcal{Code}\)
#include <cmath>
#include <queue>
#include <cstdio>
typedef std::pair<int, int> pii;
const int MAXN = 1e6, MOD = 1e9 + 7;
int n, K, nfac[MAXN + 5], ifac[MAXN + 5];
double lfac[MAXN + 5];
inline double combl ( const int n, const int m ) {
return lfac[n] - lfac[m] - lfac[n - m];
}
inline int combn ( const int n, const int m ) {
return 1ll * nfac[n] * ifac[m] % MOD * ifac[n - m] % MOD;
}
inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
}
struct cmp {
inline bool operator () ( const pii a, const pii b ) {
return combl ( a.first, a.second ) < combl ( b.first, b.second );
}
};
std::priority_queue<pii, std::vector<pii>, cmp> heap;
int main () {
scanf ( "%d %d", &n, &K );
nfac[0] = nfac[1] = 1;
for ( int i = 2; i <= n; ++ i ) {
lfac[i] = lfac[i - 1] + log2 ( i );
nfac[i] = 1ll * i * nfac[i - 1] % MOD;
}
ifac[n] = qkpow ( nfac[n], MOD - 2 );
for ( int i = n - 1; ~ i; -- i ) ifac[i] = ( i + 1ll ) * ifac[i + 1] % MOD;
for ( int i = 0; i <= n; ++ i ) heap.push ( { n, i } );
int ans = 0;
while ( K -- ) {
pii t = heap.top (); heap.pop ();
ans = ( ans + combn ( t.first, t.second ) ) % MOD;
if ( t.first && t.first ^ t.second ) heap.push ( { t.first - 1, t.second } );
}
printf ( "%d\n", ans );
return 0;
}
Solution -「Code+#4」「洛谷 P4370」组合数问题 2的更多相关文章
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\time ...
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Solution -「POI 2010」「洛谷 P3511」MOS-Bridges
\(\mathcal{Description}\) Link.(洛谷上这翻译真的一言难尽呐. 给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...
- Solution -「APIO 2016」「洛谷 P3643」划艇
\(\mathcal{Description}\) Link & 双倍经验. 给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...
- 「洛谷P1516」 青蛙的约会
洛谷题号:P1516 出处:? 主要算法:数论 难度:4.4 思路分析: 典型的同余方程.由于是纬线,绕一圈是可以绕回来的,所以是可以取模的. 阅读题目,很容易得到同余方程$ x + tm ≡ y + ...
- 「BZOJ1038」「洛谷P2600」「ZJOI2008」瞭望塔 半平面交+贪心
题目链接 BZOJ/洛谷 题目描述 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安. 我们将H村抽象为一维的轮廓.如下图所示: 我们可以用一条山的上方 ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
随机推荐
- Go语言系列之自定义实现日志库
日志库logo gitee地址传送门:https://gitee.com/zhangyafeii/logo 日志库需求分析 1. 支持往不同的地方输出日志 2. 日志分级别 Debug Trace I ...
- Win10编辑Host文件授权问题
今天重温Kafka命令, 使用KafkaTool连接Broker,需要修改主机名,发现host修改时,提示以下错误: C:\Windows\System32\drivers\etc\hosts.txt ...
- POJCrossing River
http://poj.org/problem?id=1700贪心问题 对于一个安排,怎么样是最小的?首先关于花费,对于每次运输,以最节约的方式运输.两种情况,一种最轻的作为往返,另外 一种是每次带一个 ...
- 如何提高docker容器的安全性
一. 概述 Docker 容器一直是开发人员工具箱的重要组成部分,使开发人员能够以标准化的方式构建.分发和部署他们的应用程序.毫无疑问,这种吸引力的增加伴随着容器化技术的相关安全问题.他们可以很容易地 ...
- 面渣逆袭:Java并发六十问,快来看看你会多少道!
大家好,我是老三,面渣逆袭 继续,这节我们来盘一盘另一个面试必问知识点--Java并发. 这篇文章有点长,四万字,图文详解六十道Java并发面试题.人已经肝麻了,大家可以点赞.收藏慢慢看!扶我起来,我 ...
- 《剑指offer》面试题31. 栈的压入、弹出序列
问题描述 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如,序列 {1,2,3,4,5} 是某栈的压栈序列,序列 {4,5,3,2 ...
- 《剑指offer》面试题68 - I. 二叉搜索树的最近公共祖先
问题描述 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先表示为一个结点 x,满足 x 是 p ...
- Jquery操作文本内容(三个方法:html()、text()、var())
Jquery操作文本内容(三个方法:html().text().var()) 一.html()获取和设置文本内容和标签 1.获取标签里的结构和内容 $("ul").html() / ...
- Golang 基准测试Benchmark
基准测试 Go语言标准库内置的 testing 测试框架提供了基准测试(benchmark)的能力,实现了对某个特定目标场景的某项性能指标进行定量的和可对比的测试. 基本规则 基准测试的代码文件必须以 ...
- 【笔记】macos上部署thanos_receiver + thanos_query
为了方便起见,在mac笔记本上进行了测试 1.写一个发送数据的客户端 package main import ( "fmt" "io/ioutil" " ...