\(\mathcal{Description}\)

  Link.

  称排列 \(\{p_n\}\) 美妙,当且仅当 \((\forall i\in[1,n))(\max_{j\in[1,i]}\{p_i\}>\min_{j\in(i,n]}\{p_j\})\)。求长度为 \(n\) 的美妙排列个数。多测。

  \(n\le10^5\)。

\(\mathcal{Solution}\)

  讨论这道题的时候——打表,然后发现了 A003319!/xyx

  显然 \(f(0)=0,f(1)=1\),然后 A003319 给出了长度为 \(n\) 的美妙排列个数 \(f(n)\) 的递推式:

\[f(n)=n!-\sum_{i=1}^{n-1}i!f(n-i)
\]

  先证明这个递推。等式相当于用所有方案 \(n!\) 减去了所有不美妙的序列方案并保证其不重复。考虑当求和的 \(i\) 等于某个数 \(k\) 时,构造序列:

\[\overbrace{p_1~~~~p_2~~~~\cdots~~~~p_k}^{\text{a permutation from 1 to k}}~~~~\overbrace{p_{k+1}~~~~p_{k+2}~~~~\cdots~~~~p_n}^{\text{a permutation from k+1 to n}}
\]

  其中,后一个排列由合法的 \(f(n-k)\) 整体 \(+k\) 形成,显然它是合法的。但当分隔点在 \(k\) 时,前缀最大为 \(k\),后缀最小为 \(k+1\),可见整个排列不合法。这样计算是不会算重的——非法排列仅会在分隔点在 \(k\) 处时被算一次,否则将任意一个数 \(t\in[1,k]\) 加入后面合法的排列,都会使排列不合法,不满足 \(f(n-k)\) 的定义。

  接下来着手计算。移项:

\[\sum_{i=0}^{n}i!f(n-i)=n!
\]

  那么 \(f\) 的 \(\text{OGF}\) 满足:

\[1+F(x)P(x)=P(x)
\]

  \(+1\) 是因为左式的 \(f_0\) 被定义为 \(0\),而 \(0!=1\),所以常数项 \(+1\)。最后移项得到 \(F(x)\) 的表达式:

\[F(x)=1-P^{-1}(x)
\]

  多项式求逆算出 \(F\) 即可。复杂度 \(\mathcal O(n\log n)-\mathcal O(1)\)。

\(\mathcal{Code}\)

#include <cmath>
#include <cstdio> const int MAXN = 1 << 18, MOD = 998244353;
int fac[MAXN + 5], F[MAXN + 5]; inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int sub ( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int mul ( long long a, const int b ) { return ( a *= b ) < MOD ? a : a % MOD; } inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
} namespace Poly { const int G = 3; inline int adjust ( const int n ) {
int ret = 0;
for ( int l = 1; l < n; l <<= 1, ++ ret );
return ret;
} inline void NTT ( const int n, int* A, const int tp ) {
static int lstn = -1, rev[MAXN + 5] {};
if ( lstn ^ n ) {
int lgn = log ( n ) / log ( 2 ) + 0.5;
for ( int i = 0; i < n; ++ i ) rev[i] = ( rev[i >> 1] >> 1 ) | ( ( i & 1 ) << lgn >> 1 );
lstn = n;
}
for ( int i = 0; i < n; ++ i ) if ( i < rev[i] ) A[i] ^= A[rev[i]] ^= A[i] ^= A[rev[i]];
for ( int i = 2, stp = 1; i <= n; i <<= 1, stp <<= 1 ) {
int w = qkpow ( G, ( MOD - 1 ) / i );
if ( ! ~ tp ) w = qkpow ( w, MOD - 2 );
for ( int j = 0; j < n; j += i ) {
for ( int k = j, r = 1; k < j + stp; ++ k, r = mul ( r, w ) ) {
int ev = A[k], ov = mul ( r, A[k + stp] );
A[k] = add ( ev, ov ), A[k + stp] = sub ( ev, ov );
}
}
}
if ( ! ~ tp ) {
int invn = qkpow ( n, MOD - 2 );
for ( int i = 0; i < n; ++ i ) A[i] = mul ( A[i], invn );
}
} inline void polyInv ( const int n, const int* A, int* R ) {
static int tmp[MAXN + 5] {};
if ( n == 1 ) return void ( R[0] = qkpow ( A[0], MOD - 2 ) );
int len = 1 << adjust ( n << 1 );
polyInv ( n + 1 >> 1, A, R );
for ( int i = 0; i < n; ++ i ) tmp[i] = A[i];
NTT ( len, tmp, 1 ), NTT ( len, R, 1 );
for ( int i = 0; i < len; ++ i ) R[i] = mul ( sub ( 2, mul ( tmp[i], R[i] ) ), R[i] ), tmp[i] = 0;
NTT ( len, R, -1 );
for ( int i = n; i < len; ++ i ) R[i] = 0;
} } // namespace Poly. int main () {
int T, n = 1e5;
fac[0] = 1;
for ( int i = 1; i <= n; ++ i ) fac[i] = mul ( fac[i - 1], i );
Poly::polyInv ( n + 1, fac, F );
F[0] = ( 1 - F[0] + MOD ) % MOD;
for ( int i = 1; i <= n; ++ i ) F[i] = ( MOD - F[i] ) % MOD;
for ( scanf ( "%d", &T ); T --; ) {
scanf ( "%d", &n );
printf ( "%d\n", F[n] );
}
return 0;
}

Solution -「51nod 1514」美妙的序列的更多相关文章

  1. 【51nod 1514】 美妙的序列

    题目 我们发现我们得正难则反 还是设\(f_i\)表示长度为\(i\)的序列个数 考虑容斥 \[f_i=i!-\sum_{j=1}^{i-1}f_j(i-j)!\] \(i!\)显然是总方案数,我们减 ...

  2. Solution -「51nod 1868」彩色树

    \(\mathcal{Description}\)   Link & 双倍经验 Link.   给定一棵 \(n\) 个结点的树,每个结点有一种颜色.记 \(g(u,v)\) 表示 \(u\) ...

  3. Solution -「51nod 1355」斐波那契的最小公倍数

    \(\mathcal{Description}\)   Link.   令 \(f\) 为 \(\text{Fibonacci}\) 数列,给定 \(\{a_n\}\),求: \[\operatorn ...

  4. Solution -「51nod 1584」加权约数和

    \(\mathcal{Description}\)   Link.   令 \(\sigma(n)\) 为 \(n\) 的约数之和.求: \[\sum_{i=1}^n\sum_{j=1}^n\max\ ...

  5. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  6. Solution -「ZJOI 2020」「洛谷 P6631」序列

    \(\mathcal{Description}\)   Link.   给定一个长为 \(n\) 的非负整数序列 \(\lang a_n\rang\),你可以进行如下操作: 取 \([l,r]\),将 ...

  7. Solution -「CTS 2019」「洛谷 P5404」氪金手游

    \(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...

  8. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

  9. Solution -「CF 1491H」Yuezheng Ling and Dynamic Tree

    \(\mathcal{Description}\)   Link. 做题原因:题目名.   给定一个长度 \(n-1\) 的序列 \(\{a_2,a_3,\cdots,a_n\}\),其描述了一棵 \ ...

随机推荐

  1. js箭头函数 的 (e) => { } 写法笔记

    1. (e) => {} 是ES 6 新语法,默认是Es 5.1,因此在这里设置一下就不会提示红色下划线了 2.使用: (e) => {}  , 其实就是function (e){} 的缩 ...

  2. centos7 系统正则符号

    点符号 . 匹配任意一个字符,且只有一个字符 星符号 * 匹配任意0和或多个以上连续的字符 扩展符号 括号符号[] 匹配括号出现的字符信息 [^abc] --表示排除含有abc字符的内容,是单个字符a ...

  3. C#进阶——从应用上理解异步编程的作用(async / await)

    欢迎来到学习摆脱又加深内卷篇 下面是学习异步编程的应用 1.首先,我们建一个winfrom的项目,界面如下: 2.然后先写一个耗时函数: /// <summary> /// 耗时工作 // ...

  4. Spark本地环境实现wordCount单词计数

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6814778610788860424/ 编写类似MapReduce的案例-单词统计WordCount 要统计的文件为 ...

  5. Python爬虫脚本 ,Uni-APP复选框做出双向绑定 ,Net5工作流建模 。的一点经验

    从业C#开发多年,现在也经常用到Python 做网络爬虫 ,用Uni-app做手机前端.攒了一点经验.供其他多语言开发程序员借鉴吧. Python做爬虫和其他的方式做爬虫最大的区别应该在于. Pyth ...

  6. 【Java】Super

    Super super用于调用父类的属性.方法.构造器,与this相同. super的使用 属性与方法 在子类的方法或构造器中.通过使用"super.属性"或"super ...

  7. 【Java】Eclipse常用快捷键

    Eclipse常用快捷键 * 1.补全代码的声明:alt + / * 2.快速修复: ctrl + 1 * 3.批量导包:ctrl + shift + o * 4.使用单行注释:ctrl + / * ...

  8. Python webargs 模块

    一.安装 python3 -m pip install webargs 文档 二.基础特性 # encoding=utf-8 from flask import Flask from webargs ...

  9. 🏆【Alibaba中间件技术系列】「Nacos技术专题」服务注册与发现相关的原理分析

    背景介绍 前几篇文章介绍了Nacos配置中心服务的能力机制,接下来,我们来介绍Nacos另一个非常重要的特性就是服务注册与发现,说到服务的注册与发现相信大家应该都不陌生,在微服务盛行的今天,服务是非常 ...

  10. 数据库备份还原 mysqldump

    1.备份全部数据库的数据和结构mysqldump -uroot -p123456 --all-databases >all.bakmysqldump -uroot -p123456 -A > ...