[USACO18DEC]The Cow Gathering P
首先可以思考一下每次能删去的点有什么性质。
不难发现,每次能删去的点都是入度恰好为 \(1\) 的那些点(包括 \(a_i \rightarrow b_i\) 的有向边)。 换句话说,每次能删去的点既要是树上的叶子节点,并且不会被任意一条有向边 \(a_i \rightarrow b_i\) 指向。那么再来思考一下每个点能否走后离开。
因为 \(i\) 号点只能最后离开,那么我们将 \(i\) 看作这课树的根(因为每次只能走叶子)。你会发现如果 \(i\) 不能最后走当前仅当会存在一条路径(走有向边) \(x \rightarrow y\) 使得 \(y\) 是 \(x\) 子树中的点,于是我们单次判断就能做到 \(O(nm)\) 了。那么这个判定条件有没有更为简单的描述呢?其实是存在的,你会发现如果我们将所有树边从儿子指向父亲,那么 \(i\) 不能最后走当且仅当这张有向图存在着一个环。于是这样单次判断的复杂度就能做到 \(O(n + m)\) 了。但这样的复杂度还不够,我们可能需要换一种方式思考。
既然每次判断点不方便,我们能否考虑每条有向边对每个点的影响呢?事实上是可以的,不难发现对于任意一条有向边 \(x \rightarrow y\),在以 \(y\) 为根时以 \(x\) 为根的子树内所有点为根时 \(x \rightarrow y\) 就会在树上形成一个环,那么这些点都是不能最后删除的。那么我们怎么找到这些点呢?因为我们显然不可能每次都换根,可以先钦定 \(1\) 为树根。那么你会发现存在两种情况 \(y\) 为 \(x\) 的祖先时,令 \(f\) 为 \(x \rightarrow y\) 这条链上 \(y\) 的儿子(可以 \(O(\log n)\) 倍增求出,在 [USACO19JAN]Exercise Route P 中提到),那么这些点就会是整棵树除了以 \(f\) 为根的子树内的点。那么我们在根以及 \(f\) 上打标记差分即可。对于其他情况,这些点就会是以 \(x\) 为根的子树内的点,直接打标记即可。最终我们树上差分跑一边 \(dfs\) 即可。
这样就做完了吗?事实上并没有,你会发现你忽略了有向边之间的影响。那么怎样的情况会对答案有影响呢?当且仅当形成了一条跨子树的路径 \(x \rightarrow \cdots \rightarrow y\) 其中 \(y\) 为 \(x\) 子树内的点,并且仔细分析你会发现,如果出现这种情况那么整张图是不存在这样的删除序列的。那么判掉是否对答案有贡献只需判断这张图是否有解即可,直接拓扑排序每次加入度数为 \(1\) 的点,最终如果存在没有入队的点就无解。
#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
#define dep(i, l, r) for (int i = r; i >= l; --i)
#define Next(i, u) for (int i = h[u]; i; i = e[i].next)
const int N = 100000 + 5;
const int M = 20 + 5;
struct edge {
int v, next;
}e[N * 3];
bool book[N];
int n, m, u, v, tot, cnt, x[N], y[N], d[N], h[N], c[N], sz[N], dfn[N], dep[N], ans[N], f[N][M];
queue <int> Q;
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
void add(int u, int v) {
e[++tot].v = v, e[tot].next = h[u], h[u] = tot, ++d[v];
}
void dfs(int u, int fa){
f[u][0] = fa, sz[u] = 1, dfn[u] = ++cnt, dep[u] = dep[fa] + 1;
Next(i, u) {
int v = e[i].v; if(v == fa) continue;
dfs(v, u), sz[u] += sz[v];
}
}
int find(int x, int y) {
dep(i, 0, 20) if(dep[f[x][i]] > dep[y]) x = f[x][i];
return x;
}
void calc(int u, int fa, int tmp){
ans[u] = tmp + c[u];
Next(i, u) {
int v = e[i].v; if(v == fa) continue;
calc(v, u, tmp + c[u]);
}
}
int main() {
n = read(), m = read();
rep(i, 1, n - 1) u = read(), v = read(), add(u, v), add(v, u);
dfs(1, 0);
rep(j, 1, 20) rep(i, 1, n) f[i][j] = f[f[i][j - 1]][j - 1];
rep(i, 1, m) {
x[i] = u = read(), y[i] = v = read();
if(dfn[v] >= dfn[u] && dfn[v] <= dfn[u] + sz[u] - 1) ++c[1], --c[find(v, u)];
else ++c[u];
}
calc(1, 0, 0);
rep(i, 1, m) add(x[i], y[i]);
rep(i, 1, n) if(d[i] == 1) Q.push(i), book[i] = true;
while(!Q.empty()) {
int u = Q.front(); Q.pop();
Next(i, u) {
int v = e[i].v; if(book[v]) continue;
--d[v]; if(d[v] == 1) Q.push(v), book[v] = 1;
}
}
rep(i, 1, n) if(!book[i]) {
rep(j, 1, n) puts("0");
return 0;
}
rep(i, 1, n) printf(ans[i] > 0 ? "0\n" : "1\n");
return 0;
}
值得一提的是,判定性或定义型问题一定要去思考判定条件。另外,反向考虑每条边对答案的影响也是非常重要的。当发现自己的做法出现问题或考虑不全的时候,不要慌张,仔细分析看看能否以一种简单的方式解决这些问题。
[USACO18DEC]The Cow Gathering P的更多相关文章
- [USACO18DEC]The Cow Gathering
Description: 给定一棵树,每次删去叶子,有m个限制,分别为(a,b)表示a需要比b先删,为每个点能否成为最后被删的点 Hint: \(n,m \le 10^5\) Solution: 手模 ...
- P5157 [USACO18DEC]The Cow Gathering
首先考虑怎么check一个点是否能被最后一个删除. 可以这么建图,以这个点建有根树,边全部向上指,再加上剩下的有向边. 很明显,这里的一条边的定义就变成了只有删去这个点,才可以删去它指向的点. 因此, ...
- BZOJ1827[USACO 2010 Mar Gold 1.Great Cow Gathering]——树形DP
题目描述 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,000) 个农场 ...
- 【luoguP2986】[USACO10MAR]伟大的奶牛聚集Great Cow Gathering
题目链接 先把\(1\)作为根求每个子树的\(size\),算出把\(1\)作为集会点的代价,不难发现把集会点移动到\(u\)的儿子\(v\)上后的代价为原代价-\(v\)的\(size\)*边权+( ...
- P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…(树规)
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- 洛谷 P2986 [USACO10MAR]Great Cow Gat…(树形dp+容斥原理)
P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat… 题目描述 Bessie is planning the annual Great Cow Gathering for c ...
- [USACO10MAR]伟大的奶牛聚集Great Cow Gat…
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- 【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
随机推荐
- MADE: Masked Autoencoder for Distribution Estimation
目录 概 主要内容 代码 Germain M., Gregor K., Murray I. and Larochelle H. MADE: Masked Autoencoder for Distrib ...
- CS5216 DP转HDMI 1080P方案|CS5216参数|CS5216中文规格书
Capstone CS5216是一款单端口/中继器,具有重新定时功能.它支持交流和直流耦合3.0-Gbps操作,可编程均衡和抖动清除.它包括DP电缆适配器寄存器,可用于识别电缆适配器的功能.这个抖动清 ...
- Java面向对象笔记 • 【第6章 Java常用类】
全部章节 >>>> 本章目录 6.1 Object类 6.1.1 Object类概述 6.1.2 Object的常用方法 6.1.3 实践练习 6.2 String类和St ...
- Java二、八、十、十六进制介绍
1.说明 在Java中整数有四种表示方式, 分别为十进制,二进制,八进制,十六进制, 其中十进制就是平常最熟悉,使用最多的进制: 二进制是在计算机中使用最多的进制, 八进制和十六进制都是基于二进制的, ...
- SpringBoot 原理分析、监控、项目部署
目录 SpringBoot 监控 概述 使用 SpringBoot Admin 概述 使用 SpringBoot 项目部署 SpringBoot 监控 概述 SpringBoot 自带监控功能 Act ...
- Docker_安装和卸载(2)
1.检查是否安装docker docker -v 下图为已安装docker的结果 下图为未安装docker的结果 2.卸载docker 查看已安装的版本 yum list installed | gr ...
- Git创建分支进行开发
一.业务场景 自己当前开发的项目算是一个中型项目,整个项目都是由自己一个人开发完成,主要有两个子项目,一个是小程序的后台,一个是小程序的后台管理系统. 因为从一开始就只有我一个人在进行开发,所以自己平 ...
- MASA Framework - 整体设计思路
源起 年初我们在找一款框架,希望它有如下几个特点: 学习成本低 只需要学.Net每年主推的技术栈和业务特性必须支持的中间件,给开发同学减负,只需要专注业务就好 个人见解:一款好用的框架应该是补充,而不 ...
- Sentine熔断降级进阶
sentinel和springCloud整合 减少开发的复杂度,对大部分的主流框架,例如:Web Servlet.Dubbo.Spring Cloud.gRPC.Spring WebFlux.Reac ...
- linux 查看端口占用情况并关闭进程
首先要搞清楚 linux 查看进程和查看端口是两个概念,一般来讲进程会有多个,而固定端口只会有一个. 1.查看进程 ,通常在使用 ps 命令后 用管道连接(ps -ef|grep xxx ) 查 ...