首先可以思考一下每次能删去的点有什么性质。

不难发现,每次能删去的点都是入度恰好为 \(1\) 的那些点(包括 \(a_i \rightarrow b_i\) 的有向边)。 换句话说,每次能删去的点既要是树上的叶子节点,并且不会被任意一条有向边 \(a_i \rightarrow b_i\) 指向。那么再来思考一下每个点能否走后离开。

因为 \(i\) 号点只能最后离开,那么我们将 \(i\) 看作这课树的根(因为每次只能走叶子)。你会发现如果 \(i\) 不能最后走当前仅当会存在一条路径(走有向边) \(x \rightarrow y\) 使得 \(y\) 是 \(x\) 子树中的点,于是我们单次判断就能做到 \(O(nm)\) 了。那么这个判定条件有没有更为简单的描述呢?其实是存在的,你会发现如果我们将所有树边从儿子指向父亲,那么 \(i\) 不能最后走当且仅当这张有向图存在着一个环。于是这样单次判断的复杂度就能做到 \(O(n + m)\) 了。但这样的复杂度还不够,我们可能需要换一种方式思考。

既然每次判断点不方便,我们能否考虑每条有向边对每个点的影响呢?事实上是可以的,不难发现对于任意一条有向边 \(x \rightarrow y\),在以 \(y\) 为根时以 \(x\) 为根的子树内所有点为根时 \(x \rightarrow y\) 就会在树上形成一个环,那么这些点都是不能最后删除的。那么我们怎么找到这些点呢?因为我们显然不可能每次都换根,可以先钦定 \(1\) 为树根。那么你会发现存在两种情况 \(y\) 为 \(x\) 的祖先时,令 \(f\) 为 \(x \rightarrow y\) 这条链上 \(y\) 的儿子(可以 \(O(\log n)\) 倍增求出,在 [USACO19JAN]Exercise Route P 中提到),那么这些点就会是整棵树除了以 \(f\) 为根的子树内的点。那么我们在根以及 \(f\) 上打标记差分即可。对于其他情况,这些点就会是以 \(x\) 为根的子树内的点,直接打标记即可。最终我们树上差分跑一边 \(dfs\) 即可。

这样就做完了吗?事实上并没有,你会发现你忽略了有向边之间的影响。那么怎样的情况会对答案有影响呢?当且仅当形成了一条跨子树的路径 \(x \rightarrow \cdots \rightarrow y\) 其中 \(y\) 为 \(x\) 子树内的点,并且仔细分析你会发现,如果出现这种情况那么整张图是不存在这样的删除序列的。那么判掉是否对答案有贡献只需判断这张图是否有解即可,直接拓扑排序每次加入度数为 \(1\) 的点,最终如果存在没有入队的点就无解。

#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
#define dep(i, l, r) for (int i = r; i >= l; --i)
#define Next(i, u) for (int i = h[u]; i; i = e[i].next)
const int N = 100000 + 5;
const int M = 20 + 5;
struct edge {
int v, next;
}e[N * 3];
bool book[N];
int n, m, u, v, tot, cnt, x[N], y[N], d[N], h[N], c[N], sz[N], dfn[N], dep[N], ans[N], f[N][M];
queue <int> Q;
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
void add(int u, int v) {
e[++tot].v = v, e[tot].next = h[u], h[u] = tot, ++d[v];
}
void dfs(int u, int fa){
f[u][0] = fa, sz[u] = 1, dfn[u] = ++cnt, dep[u] = dep[fa] + 1;
Next(i, u) {
int v = e[i].v; if(v == fa) continue;
dfs(v, u), sz[u] += sz[v];
}
}
int find(int x, int y) {
dep(i, 0, 20) if(dep[f[x][i]] > dep[y]) x = f[x][i];
return x;
}
void calc(int u, int fa, int tmp){
ans[u] = tmp + c[u];
Next(i, u) {
int v = e[i].v; if(v == fa) continue;
calc(v, u, tmp + c[u]);
}
}
int main() {
n = read(), m = read();
rep(i, 1, n - 1) u = read(), v = read(), add(u, v), add(v, u);
dfs(1, 0);
rep(j, 1, 20) rep(i, 1, n) f[i][j] = f[f[i][j - 1]][j - 1];
rep(i, 1, m) {
x[i] = u = read(), y[i] = v = read();
if(dfn[v] >= dfn[u] && dfn[v] <= dfn[u] + sz[u] - 1) ++c[1], --c[find(v, u)];
else ++c[u];
}
calc(1, 0, 0);
rep(i, 1, m) add(x[i], y[i]);
rep(i, 1, n) if(d[i] == 1) Q.push(i), book[i] = true;
while(!Q.empty()) {
int u = Q.front(); Q.pop();
Next(i, u) {
int v = e[i].v; if(book[v]) continue;
--d[v]; if(d[v] == 1) Q.push(v), book[v] = 1;
}
}
rep(i, 1, n) if(!book[i]) {
rep(j, 1, n) puts("0");
return 0;
}
rep(i, 1, n) printf(ans[i] > 0 ? "0\n" : "1\n");
return 0;
}

值得一提的是,判定性或定义型问题一定要去思考判定条件。另外,反向考虑每条边对答案的影响也是非常重要的。当发现自己的做法出现问题或考虑不全的时候,不要慌张,仔细分析看看能否以一种简单的方式解决这些问题。

[USACO18DEC]The Cow Gathering P的更多相关文章

  1. [USACO18DEC]The Cow Gathering

    Description: 给定一棵树,每次删去叶子,有m个限制,分别为(a,b)表示a需要比b先删,为每个点能否成为最后被删的点 Hint: \(n,m \le 10^5\) Solution: 手模 ...

  2. P5157 [USACO18DEC]The Cow Gathering

    首先考虑怎么check一个点是否能被最后一个删除. 可以这么建图,以这个点建有根树,边全部向上指,再加上剩下的有向边. 很明显,这里的一条边的定义就变成了只有删去这个点,才可以删去它指向的点. 因此, ...

  3. BZOJ1827[USACO 2010 Mar Gold 1.Great Cow Gathering]——树形DP

    题目描述 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,000) 个农场 ...

  4. 【luoguP2986】[USACO10MAR]伟大的奶牛聚集Great Cow Gathering

    题目链接 先把\(1\)作为根求每个子树的\(size\),算出把\(1\)作为集会点的代价,不难发现把集会点移动到\(u\)的儿子\(v\)上后的代价为原代价-\(v\)的\(size\)*边权+( ...

  5. P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  6. 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…(树规)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  7. 洛谷 P2986 [USACO10MAR]Great Cow Gat…(树形dp+容斥原理)

    P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat… 题目描述 Bessie is planning the annual Great Cow Gathering for c ...

  8. [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  9. 【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

随机推荐

  1. Codeforces 876B:Divisiblity of Differences(数学)

    B. Divisiblity of Differences You are given a multiset of n integers. You should select exactly k of ...

  2. IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES

    目录 概 主要内容 符号 MART Wang Y, Zou D, Yi J, et al. Improving Adversarial Robustness Requires Revisiting M ...

  3. .NetCore基于Jenkins和Gogs的自动化部署方案

    准备工作 Jenkins和gogs的安装配置可以看前两篇:Jenkins安装.配置与说明  和 gogs安装与说明(docker) 此外,因为还要安装.net core的SDK和Git工具: 安装.n ...

  4. org.reflections 接口通过反射获取实现类源码研究

    org.reflections 接口通过反射获取实现类源码研究 版本 org.reflections reflections 0.9.12 Reflections通过扫描classpath,索引元数据 ...

  5. Pytest_在jenkins中使用allure报告(13)

    一.安装allure插件 点击jenkins管理-->插件管理 点击Available,在搜索框中输入allure并安装 二.配置构建命令 三.构建配置allure插件 点击构建后置操作 pat ...

  6. Linux的六种查找命令

    http://www.ruanyifeng.com/blog/2009/10/5_ways_to_search_for_files_using_the_terminal.html 1. find fi ...

  7. [ flask ] flask-restful 实现嵌套的有关系的输出字段

    问题描述: 1. 先说明数据关系:有用户,和菜谱.一个用户可以拥有多个菜谱:一对多的关系 2.  resources/users.py 的输出字段: user_fields = { 'id':fiel ...

  8. Windows系统上搭建Clickhouse开发环境

    Windows系统上搭建Clickhouse开发环境 总体思路 微软的开发IDE是很棒的,有两种:Visual Studio 和 VS Code,一个重量级,一个轻量级.近年来VS Code越来越受欢 ...

  9. 403 Invalid CORS request 跨域问题 invalid+cors+request什么意思

    5.跨域问题 跨域:浏览器对于javascript的同源策略的限制 . 以下情况都属于跨域: 跨域原因说明 示例 域名不同 www.jd.com 与 www.taobao.com 域名相同,端口不同 ...

  10. 原生twig模板引擎详解(安装使用)

    最近在学习SSTI(服务器模板注入),所以在此总结一下 0x00 Twig的介绍 什么是Twig? Twig是一款灵活.快速.安全的PHP模板引擎. Twig的特点? 快速:Twig将模板编译为纯粹的 ...