设 \(f(x)\) 表示从 \(x\) 节点走到 \(n\) 的期望。有 $$f(x)=\sum_{{x,y}}\frac{f(y)\oplus w(x,y)}{{\rm deg}(x)}$$ 由于有后效性,无法 DP 求得。于是可以将其看作未知数,\(n\) 个点构成 \(n\) 个 \(n\) 元一次方程,解方程即可。

但还是不太好求,考虑期望的线性性,按位处理。

重新记 \(f(x)\) 表示当前位的 \(x\) 走到 \(n\) 异或和为 \(1\) 的概率,有 $${\rm deg}(x)f(x)=\sum_{w(x,y)=1}f(y)+\sum_{w(x,y)=0}\big(1-f(y)\big)$$ 最后的答案为 \(\sum\limits_{t=1}^{32} 2^{t-1}\cdot f(1)\)。

为了消元简便,实际求的过程中我们把方程写成 $$\sum_{w(x,y)=0}f(y)-\sum_{w(x,y)=1}f(y)-{\rm deg}(x)f(x)=-\sum_{w(x,y)=1}1$$

注意自环只用算一次。

别颓废了……抓紧时间……

#include <bits/stdc++.h>
using namespace std; const int N=105,M=10005;
const double eps=1e-8;
struct Edge{int to,nxt,w;}e[M<<1];
int n,m,cnt,head[N],deg[N];
double ans,a[N][N]; inline void add(int u,int v,int w) {e[++cnt]=(Edge){v,head[u],w};head[u]=cnt;} void gauss()
{
for(int i=1;i<=n;++i)
{
int t=i;
for(int j=i+1;j<=n;++j)
if(fabs(a[j][i])>fabs(a[t][i])) t=j;
for(int j=i;j<=n+1;++j) swap(a[t][j],a[i][j]);
for(int j=n+1;j>=i;--j) a[i][j]/=a[i][i];
for(int j=1;j<=n;++j)
if(i!=j)
for(int k=n+1;k>=i;--k)
a[j][k]-=a[j][i]*a[i][k];
}
} int main()
{
scanf("%d%d",&n,&m);
for(int i=1,d,b,c;i<=m;++i)
{
scanf("%d%d%d",&d,&b,&c);
if(d==b)
{
deg[d]++; add(d,b,c);
}
else
{
deg[d]++,deg[b]++;
add(d,b,c); add(b,d,c);
}
}
for(int k=30;~k;--k)
{
memset(a,0,sizeof(a));
for(int u=1;u<n;++u)
{
a[u][u]=-deg[u];
for(int i=head[u];i;i=e[i].nxt)
{
int v=e[i].to,w=(e[i].w>>k)&1;
if(w) a[u][v]-=1,a[u][n+1]-=1;
else a[u][v]+=1;
}
}
a[n][n]=1; gauss();
ans+=(1<<k)*a[1][n+1];
}
printf("%.3lf",ans);
return 0;
}

[HNOI2011]XOR和路径 题解的更多相关文章

  1. BZOJ2337:[HNOI2011]XOR和路径——题解

    +++++++++++++++++++++++++++++++++++++++++++ +本文作者:luyouqi233. + +欢迎访问我的博客:http://www.cnblogs.com/luy ...

  2. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  3. BZOJ2337: [HNOI2011]XOR和路径

    题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...

  4. 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元

    [BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...

  5. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  6. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  7. [HNOI2011]XOR和路径 && [HNOI2013]游走

    [HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权 ...

  8. 【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1170  Solved: 683 Description ...

  9. [Wc2011] Xor 和 [HNOI2011]XOR和路径

    Xor F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Prob ...

随机推荐

  1. 孟老板 ListAdapter封装, 告别Adapter代码 (上)

    BaseAdapter封装(一) 简单封装 BaseAdapter封装(二) Header,footer BaseAdapter封装(三) 空数据占位图 BaseAdapter封装(四) PageHe ...

  2. 关于JAVA的FlowLayout流动布局的换行问题--图形界面

    我在网上寻找Java流动布局换行的方法,看了好久,也没有找到满意的答案. FlowLayout是流式布局,所以如果需要让换行有意义,就得锁定窗口的大小,否则随着窗口的伸缩,布局将被彻底打乱. 网上的方 ...

  3. 单点突破:Set

    HashSet HashSet存放的是散列值,它是按照元素的散列值来存取元素的. 元素的散列值通过hashCode方法计算 HashSet通过判断两个元素的Hash值是否相等,如果相等就会用equal ...

  4. 屏蔽国内app开屏广告接口的记录

    脉脉: im-x.jd.com api.taou.com 虎扑: goblin.hupu.com 知乎(屏蔽此接口后,进入知乎会报一次错误,不影响正常使用) api.zhihu.com 豆瓣: api ...

  5. MySQL的启动选项和系统变量该如何配置?

    MySQL的配置信息可以通过两种方式实现,一种是命令行形式,在启动MySQL服务时后边带上相关配置参数,此种方式会在MySQL重启后失效.另外一种是通过写入配置文件,如my.cnf,启动或者重启MyS ...

  6. 【题解】覆盖问题 BZOJ1052 HAOI2007 二分

    题目描述 某 人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用 3个LL的正方形塑料薄膜将小树遮起来.我 ...

  7. SpringCloud Alibaba实战(7:nacos注册中心管理微服务)

    源码地址:https://gitee.com/fighter3/eshop-project.git 持续更新中-- 在上一节我们已经完成了Nacos Server的本地部署,这一节我们学习如何将Nac ...

  8. excel匹配函数vlookup和lookup

    1.vlookup(查找的条件,查找的区域,满足查找条件后需要返回的值在选中的查找区域的第几列,精确匹配还是近似匹配(精确匹配为0或False表示,反之为1或True)) =VLOOKUP(J2,$G ...

  9. Gerrit+replication 同步Gitlab

    配置环境:gerrit 192.168.1.100gitlab 192.168.1.1011.创建秘钥 [root@gerrit ~]# ssh-keygen -m PEM -t rsa 2.添加ho ...

  10. 单片机引脚扩展芯片74HC595手工分解实验

    我们先来看下效果 74HC595是常用的串转并芯片,支持芯片级联实现少量IO口控制多个IO口输出功能 14脚:DS,串行数据输入引脚 13脚:OE, 输出使能控制脚,它是低电才使能输出,所以接GND ...