[HNOI2011]XOR和路径 题解
设 \(f(x)\) 表示从 \(x\) 节点走到 \(n\) 的期望。有 $$f(x)=\sum_{{x,y}}\frac{f(y)\oplus w(x,y)}{{\rm deg}(x)}$$ 由于有后效性,无法 DP 求得。于是可以将其看作未知数,\(n\) 个点构成 \(n\) 个 \(n\) 元一次方程,解方程即可。
但还是不太好求,考虑期望的线性性,按位处理。
重新记 \(f(x)\) 表示当前位的 \(x\) 走到 \(n\) 异或和为 \(1\) 的概率,有 $${\rm deg}(x)f(x)=\sum_{w(x,y)=1}f(y)+\sum_{w(x,y)=0}\big(1-f(y)\big)$$ 最后的答案为 \(\sum\limits_{t=1}^{32} 2^{t-1}\cdot f(1)\)。
为了消元简便,实际求的过程中我们把方程写成 $$\sum_{w(x,y)=0}f(y)-\sum_{w(x,y)=1}f(y)-{\rm deg}(x)f(x)=-\sum_{w(x,y)=1}1$$
注意自环只用算一次。
别颓废了……抓紧时间……
#include <bits/stdc++.h>
using namespace std;
const int N=105,M=10005;
const double eps=1e-8;
struct Edge{int to,nxt,w;}e[M<<1];
int n,m,cnt,head[N],deg[N];
double ans,a[N][N];
inline void add(int u,int v,int w) {e[++cnt]=(Edge){v,head[u],w};head[u]=cnt;}
void gauss()
{
for(int i=1;i<=n;++i)
{
int t=i;
for(int j=i+1;j<=n;++j)
if(fabs(a[j][i])>fabs(a[t][i])) t=j;
for(int j=i;j<=n+1;++j) swap(a[t][j],a[i][j]);
for(int j=n+1;j>=i;--j) a[i][j]/=a[i][i];
for(int j=1;j<=n;++j)
if(i!=j)
for(int k=n+1;k>=i;--k)
a[j][k]-=a[j][i]*a[i][k];
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1,d,b,c;i<=m;++i)
{
scanf("%d%d%d",&d,&b,&c);
if(d==b)
{
deg[d]++; add(d,b,c);
}
else
{
deg[d]++,deg[b]++;
add(d,b,c); add(b,d,c);
}
}
for(int k=30;~k;--k)
{
memset(a,0,sizeof(a));
for(int u=1;u<n;++u)
{
a[u][u]=-deg[u];
for(int i=head[u];i;i=e[i].nxt)
{
int v=e[i].to,w=(e[i].w>>k)&1;
if(w) a[u][v]-=1,a[u][n+1]-=1;
else a[u][v]+=1;
}
}
a[n][n]=1; gauss();
ans+=(1<<k)*a[1][n+1];
}
printf("%.3lf",ans);
return 0;
}
[HNOI2011]XOR和路径 题解的更多相关文章
- BZOJ2337:[HNOI2011]XOR和路径——题解
+++++++++++++++++++++++++++++++++++++++++++ +本文作者:luyouqi233. + +欢迎访问我的博客:http://www.cnblogs.com/luy ...
- 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 682 Solved: 384[Submit][Stat ...
- BZOJ2337: [HNOI2011]XOR和路径
题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...
- 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元
[BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...
- BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )
一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...
- BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...
- [HNOI2011]XOR和路径 && [HNOI2013]游走
[HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权 ...
- 【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1170 Solved: 683 Description ...
- [Wc2011] Xor 和 [HNOI2011]XOR和路径
Xor F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser autoint Logout 捐赠本站 Prob ...
随机推荐
- 孟老板 ListAdapter封装, 告别Adapter代码 (上)
BaseAdapter封装(一) 简单封装 BaseAdapter封装(二) Header,footer BaseAdapter封装(三) 空数据占位图 BaseAdapter封装(四) PageHe ...
- 关于JAVA的FlowLayout流动布局的换行问题--图形界面
我在网上寻找Java流动布局换行的方法,看了好久,也没有找到满意的答案. FlowLayout是流式布局,所以如果需要让换行有意义,就得锁定窗口的大小,否则随着窗口的伸缩,布局将被彻底打乱. 网上的方 ...
- 单点突破:Set
HashSet HashSet存放的是散列值,它是按照元素的散列值来存取元素的. 元素的散列值通过hashCode方法计算 HashSet通过判断两个元素的Hash值是否相等,如果相等就会用equal ...
- 屏蔽国内app开屏广告接口的记录
脉脉: im-x.jd.com api.taou.com 虎扑: goblin.hupu.com 知乎(屏蔽此接口后,进入知乎会报一次错误,不影响正常使用) api.zhihu.com 豆瓣: api ...
- MySQL的启动选项和系统变量该如何配置?
MySQL的配置信息可以通过两种方式实现,一种是命令行形式,在启动MySQL服务时后边带上相关配置参数,此种方式会在MySQL重启后失效.另外一种是通过写入配置文件,如my.cnf,启动或者重启MyS ...
- 【题解】覆盖问题 BZOJ1052 HAOI2007 二分
题目描述 某 人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用 3个LL的正方形塑料薄膜将小树遮起来.我 ...
- SpringCloud Alibaba实战(7:nacos注册中心管理微服务)
源码地址:https://gitee.com/fighter3/eshop-project.git 持续更新中-- 在上一节我们已经完成了Nacos Server的本地部署,这一节我们学习如何将Nac ...
- excel匹配函数vlookup和lookup
1.vlookup(查找的条件,查找的区域,满足查找条件后需要返回的值在选中的查找区域的第几列,精确匹配还是近似匹配(精确匹配为0或False表示,反之为1或True)) =VLOOKUP(J2,$G ...
- Gerrit+replication 同步Gitlab
配置环境:gerrit 192.168.1.100gitlab 192.168.1.1011.创建秘钥 [root@gerrit ~]# ssh-keygen -m PEM -t rsa 2.添加ho ...
- 单片机引脚扩展芯片74HC595手工分解实验
我们先来看下效果 74HC595是常用的串转并芯片,支持芯片级联实现少量IO口控制多个IO口输出功能 14脚:DS,串行数据输入引脚 13脚:OE, 输出使能控制脚,它是低电才使能输出,所以接GND ...