Inverse/Implicit Function Theorem
这个章节讲得很好, 还引用了庄子秋水中的一段话, 大佬啊.
4.1 The Inverse Function Theorem
映射\(F: \mathbb{R}^n \rightarrow \mathbb{R}^m\)在\(p_0\)可微, 若存在\(DF(p_0) \in \mathbb{R}^{m \times n}\)使得
\]
定理4.1(逆函数定理): 令\(F:U\rightarrow \mathbb{R}^n\)为一\(C^1\)映射, 其中\(U \subset \mathbb{R}^n\)为一开集, \(p_0 \in U\), 假设\(DF(p_0)\)可逆, 则存在开集\(V, W\)分别包含\(p_0, F(p_0)\)使得\(F\)在\(V\)上的限制是一个双射, 且其在\(W\)的逆映射是\(C^1\)的. 此外, 若\(F\)在\(U\)上是\(C^k, 1\le k \le \infty\)则其逆映射也是\(C^k\)的.
首先是需要证明在\(p_0\)附近的对应是一一的, 这用到了
\]
这一压缩映射(首先得证明它是压缩映射, 同时在此过程中可确定\(W\)).
第二步是证明逆映射的连续性, 然后是可微性.
最后\(C^k\)的证明可由, \(DF(G(y))DG(y)=I\)得到
\]
The Implicit Function Theorem
定理4.3 (隐函数定理): 设\(F:U \rightarrow \mathbb{R}^m\)为定义在开集\(U \subset \mathbb{R}^n \times \mathbb{R}^m\)上的\(C^1\)映射. 假设\((p_0, q_0) \in U\)满足\(F(p_0,q_0)=0\), 且\(D_yF(p_0, q_0)\)可逆. 则存在开集\(V_1 \times V_2\)包含\((p_0, q_0)\)和一个\(C^1\)映射\(\varphi:V_1 \rightarrow V_2\), \(\varphi(p_o)=q_0\)使得
\]
若\(F\)是\(C^k\)的, 则\(\varphi\)也是\(C^k\)的, \(1 \le k \le \infty\). 此外, 此映射在所定义的开集合(似乎需要加以限制)上是唯一的.
证明考虑下列映射
\]
并利用逆函数定理.
4.3 Curves and Surfaces
这是逆函数定理和隐函数定理的一个应用, 详见原文, 内容还是很有趣的.
4.4 The Morse Lemma
non-degenerate critical point: 即一阶梯度为0, 二阶梯度(黑塞矩阵)非奇异的点.
定理4.9 (Morse引理): 令\(f\)为一定义在\(\mathbb{R}^n\)的一个开集上, 且\(p_0\)为一非退化关键点( non-degenerate critical point). 则存在一个光滑的局部坐标变换\(x=\Phi(y), p_0=\Phi(0)\)使得
\]
其中\(m, 0\le m \le n\)为关键点的index.
注: 原文中并没有\(f(p_0)\)这一项, 个人认为是作者的笔误.
Inverse/Implicit Function Theorem的更多相关文章
- learning scala How To Create Implicit Function
println("Step 1: How to create a wrapper String class which will extend the String type") ...
- 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]
目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...
- [中英双语] 数学缩写列表 (List of mathematical abbreviations)
List of mathematical abbreviations From Wikipedia, the free encyclopedia 数学缩写列表 维基百科,自由的百科全书 This ar ...
- [转]unity3d 脚本参考-技术文档
unity3d 脚本参考-技术文档 核心提示:一.脚本概览这是一个关于Unity内部脚本如何工作的简单概览.Unity内部的脚本,是通过附加自定义脚本对象到游戏物体组成的.在脚本对象内部不同志的函数被 ...
- [转]A Guide To using IMU (Accelerometer and Gyroscope Devices) in Embedded Applications.
原文地址http://www.starlino.com/imu_guide.html Introduction There’s now a FRENCH translation of this art ...
- coffeescript 1.8.0 documents
CoffeeScript is a little language that compiles into JavaScript. Underneath that awkward Java-esque ...
- Unity3D脚本中文系列教程(十三)
http://dong2008hong.blog.163.com/blog/static/469688272014032334486/ Unity3D脚本中文系列教程(十二) ◆ function G ...
- Unity3D脚本中文系列教程(八)
◆ static var matrix : Matrix4x4 描述:设置用于渲染所有gizmos的矩阵. 类方法 ◆ Static function DrawCube(center:Vector3, ...
- Oracle 10gR2分析函数
Oracle 10gR2分析函数汇总 (Translated By caizhuoyi 2008‐9‐19) 说明: 1. 原文中底色为黄的部分翻译存在商榷之处,请大家踊跃提意见: 2. 原文中淡 ...
随机推荐
- Hadoop入门 运行环境搭建
模板虚拟机 目录 模板虚拟机 1 硬件 2 操作系统 3 IP地址和主机名称 vm windows10 Hadoop100服务器 远程访问工具 其他准备 克隆虚拟机 克隆 修改主机名/ip 安装jdk ...
- A Child's History of England.29
You have not forgotten the New Forest which the Conqueror made, and which the miserable people whose ...
- 13. 搭建arm-linux-gcc交叉编译环境
1.下载工具并解压 下载路径 http://www.arm9.net/download.asp 将 arm-linux-gcc-4.5.1-v6-vfp-20120301.tgz 拷贝到 Linux ...
- CentOS7 安装配置RocketMQ --主从模式(master-slave)异步复制
机器信息 192.168.119.129 主 192.168.119.128 从 配置host[两台机器] vim /etc/hosts 添加 192.168.119.129 rocketmq-nam ...
- Docker学习(六)——Dockerfile文件详解
Docker学习(六)--Dockerfile文件详解 一.环境介绍 1.Dockerfile中所用的所有文件一定要和Dockerfile文件在同一级父目录下,可以为Dockerfile父目录的子目录 ...
- zabbix之监控Nginx连接数
#;下载Nginx (编译的时候必须加上此选项 --with-http_stub_status_module) 官网地址:http://nginx.org/en/docs/http/ngx_http_ ...
- 【Linux】【Shell】【text】awk
基本用法:gawk [options] 'program' FILE ... program: PATTERN{ACTION STATEMENTS} ...
- fatal: unable to access 'https://github.com/xxxxx/xxxx.git/': Failed to connect to github.com port 443: Timed out
今天使用git push的时候提示"fatal: unable to access 'https://github.com/xxxxx/xxxx.git/': Failed to conne ...
- Linux(CentOS 7)使用gcc编译c,c++代码
安装gcc: 1.使用 yum -list gcc* 查询 centos 官方gcc的所有包: 可安装的软件包 gcc.x86_64 gcc-c++.x86_64 gcc-gfortran.x86_6 ...
- 学习整理--vue篇(1)
vue学习 vue指令 模板指令: v-model:绑定data数据实现数据双向绑定 v-html:绑定模板内容,可书写标签 v-text:绑定数据实现单向绑定 可缩写为{{}} 支持逻辑运算 可结合 ...