Saving Beans

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4153    Accepted Submission(s): 1607

Problem Description
Although
winter is far away, squirrels have to work day and night to save beans.
They need plenty of food to get through those long cold days. After
some time the squirrel family thinks that they have to solve a problem.
They suppose that they will save beans in n different trees. However,
since the food is not sufficient nowadays, they will get no more than m
beans. They want to know that how many ways there are to save no more
than m beans (they are the same) in n trees.

Now they turn to you
for help, you should give them the answer. The result may be extremely
huge; you should output the result modulo p, because squirrels can’t
recognize large numbers.
 
Input
The first line contains one integer T, means the number of cases.

Then
followed T lines, each line contains three integers n, m, p, means that
squirrels will save no more than m same beans in n different trees, 1
<= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to
be a prime.
 
Output
You should output the answer modulo p.
 
Sample Input
2
1 2 5
2 1 5
 
Sample Output
3
3

Hint

Hint

For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

 思路:隔板法+lucas定理;
 题意:在n个树上放小于m个苹果有多少种方案;
 首先我们先考虑放m个苹果在n棵树上有多少种方案,问题转化为求x1+x2+...xn=m的方案数。
 这个就可以用隔板法来求,那么就是C(n+m-1,n-1)=C(n+m-1,m);
 那么答案就是C(n-1,0)+C(n,1)+C(n+1,2)+...C(n+m-1,m);
 根据杨辉三角上式等于C(n,0)+C(n,1)+C(n+1,2)+...C(n+m-1,m);逐项两两合并就可以得到C(n+m,m);
 那么由于primep比较小,并且n+m比较大,所以用lucas定理去求;

 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<stdlib.h>
6 #include<queue>
7 #include<map>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 LL quick(LL n,LL m,LL mod);
12 LL lucas(LL n,LL m,LL mod);
13 LL a[100005];
14 int main(void)
15 {
16 int i,j,k;
17 LL x,y,z;
18 scanf("%d",&k);
19 while(k--)
20 {
21 scanf("%lld %lld %lld",&x,&y,&z);
22 a[0]=1;
23 a[1]=1;
24 for(i=2; i<=z; i++)
25 {
26 a[i]=a[i-1]*i;
27 a[i]%=z;
28 }
29 LL n=(x+y);
30 LL m=x;
31 LL ask=lucas(m,n,z);
32 printf("%lld\n",ask%z);
33 }
34 return 0;
35 }
36 LL quick(LL n,LL m,LL mod)
37 {
38 LL ans=1;
39 while(m)
40 {
41 if(m&1)
42 {
43 ans=ans*n%mod;
44 }
45 n=n*n%mod;
46 m/=2;
47 }
48 return ans;
49 }
50 LL lucas(LL n,LL m,LL mod)
51 {
52 if(n==0)
53 {
54 return 1;
55 }
56 else
57 {
58 LL x1=n/mod;
59 LL x2=m/mod;
60 LL t1=n%mod;
61 LL t2=m%mod;
62 LL t3=a[t2-t1]*a[t1]%mod;
63 if(t2<t1)return 0;
64 LL nit3=quick(t3,mod-2,mod);
65 return (nit3*a[t2]%mod*lucas(x1,x2,mod)%mod)%mod;
66 }
67 }

Saving Beans(hud3037)的更多相关文章

  1. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  2. hdu 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  4. HDOJ 3037 Saving Beans

    如果您有n+1树,文章n+1埋不足一棵树m种子,法国隔C[n+m][m] 大量的组合,以取mod使用Lucas定理: Lucas(n,m,p) = C[n%p][m%p] × Lucas(n/p,m/ ...

  5. hdu3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Pro ...

  6. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  7. hdu3037 Saving Beans(Lucas定理)

    hdu3037 Saving Beans 题意:n个不同的盒子,每个盒子里放一些球(可不放),总球数<=m,求方案数. $1<=n,m<=1e9,1<p<1e5,p∈pr ...

  8. poj—— 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tot ...

  9. HDU 3073 Saving Beans

    Saving Beans Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original I ...

随机推荐

  1. 深入理解动态规划DP

    通过最近对于一些算法题的思考,越来越发现动态规划方法的在时间上高效性,往往该问题可以轻松的找到暴力破解的方法,其时间复杂度却不尽人意.下面来看看几个常见的动态规划思路的经典问题 例一.有一段楼梯有10 ...

  2. mysql 实现某年单季度内的品牌TOPn销量在此年此单季度内销量占比

    数据表:       结果表: mysql语句:  

  3. 『与善仁』Appium基础 — 18、元素定位工具(二)

    目录 1.Appium Inspector介绍 2.Appium Inspector打开方式 3.Appium Inspector布局介绍 4.Appium Inspector工具的配置 5.Appi ...

  4. Vector总结及部分底层源码分析

    Vector总结及部分底层源码分析 1. Vector继承的抽象类和实现的接口 Vector类实现的接口 List接口:里面定义了List集合的基本接口,Vector进行了实现 RandomAcces ...

  5. 6 — springboot中设置默认首页 -没屁用

    1.页面在static目录中时 2).测试 2.页面在templates模板引擎中时 1).这种需要导入相应的启动器 <dependency> <groupId>org.spr ...

  6. linux "/tmp/crontab.14QJ49":1: bad minute errors in crontab file, can't install" 错误

    目录 报错及原因 crontab语句格式 报错及原因 这个错误的原因是crontab格式错误 "/tmp/crontab.sdXvj4":5: bad minute errors ...

  7. git pull、git fetch、git merge、git rebase的区别

    一.git pull与git fetch区别 1.两者的区别       两者都是更新远程仓库代码到本地. git fetch相当于是从远程获取最新版本到本地,不会自动merge. 只是将远程仓库最新 ...

  8. How exactly does Google AdWords work?

    The key to how Google AdWords works is the Quality Score. Quality Score is generally how well an ad ...

  9. awk的基本用法

    最近遇到导入的csv文件首行为日期,但需要将日期作为列导入到数据库中,直接使用ctl文件好像无法实现,了解到awk这个强大的命令. 导入的CSV文件除了首行为日期,其他的都是格式相同的.需要将首行单独 ...

  10. 【Linux】【Services】【Docker】应用

    1. Docker应用: 镜像:包含了启动Docker容器所需要的文件系统层级及其内容:基于UnionFS采用分层结构实现: bootfs,rootfs registry:保存docker镜像及镜像层 ...