Saving Beans(hud3037)
Saving Beans
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4153 Accepted Submission(s): 1607
winter is far away, squirrels have to work day and night to save beans.
They need plenty of food to get through those long cold days. After
some time the squirrel family thinks that they have to solve a problem.
They suppose that they will save beans in n different trees. However,
since the food is not sufficient nowadays, they will get no more than m
beans. They want to know that how many ways there are to save no more
than m beans (they are the same) in n trees.
Now they turn to you
for help, you should give them the answer. The result may be extremely
huge; you should output the result modulo p, because squirrels can’t
recognize large numbers.
Then
followed T lines, each line contains three integers n, m, p, means that
squirrels will save no more than m same beans in n different trees, 1
<= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to
be a prime.
1 2 5
2 1 5
3
Hint
For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.
1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<stdlib.h>
6 #include<queue>
7 #include<map>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 LL quick(LL n,LL m,LL mod);
12 LL lucas(LL n,LL m,LL mod);
13 LL a[100005];
14 int main(void)
15 {
16 int i,j,k;
17 LL x,y,z;
18 scanf("%d",&k);
19 while(k--)
20 {
21 scanf("%lld %lld %lld",&x,&y,&z);
22 a[0]=1;
23 a[1]=1;
24 for(i=2; i<=z; i++)
25 {
26 a[i]=a[i-1]*i;
27 a[i]%=z;
28 }
29 LL n=(x+y);
30 LL m=x;
31 LL ask=lucas(m,n,z);
32 printf("%lld\n",ask%z);
33 }
34 return 0;
35 }
36 LL quick(LL n,LL m,LL mod)
37 {
38 LL ans=1;
39 while(m)
40 {
41 if(m&1)
42 {
43 ans=ans*n%mod;
44 }
45 n=n*n%mod;
46 m/=2;
47 }
48 return ans;
49 }
50 LL lucas(LL n,LL m,LL mod)
51 {
52 if(n==0)
53 {
54 return 1;
55 }
56 else
57 {
58 LL x1=n/mod;
59 LL x2=m/mod;
60 LL t1=n%mod;
61 LL t2=m%mod;
62 LL t3=a[t2-t1]*a[t1]%mod;
63 if(t2<t1)return 0;
64 LL nit3=quick(t3,mod-2,mod);
65 return (nit3*a[t2]%mod*lucas(x1,x2,mod)%mod)%mod;
66 }
67 }
Saving Beans(hud3037)的更多相关文章
- hdu 3037 Saving Beans Lucas定理
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- hdu 3037 Saving Beans
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- hdu 3037 Saving Beans(组合数学)
hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...
- HDOJ 3037 Saving Beans
如果您有n+1树,文章n+1埋不足一棵树m种子,法国隔C[n+m][m] 大量的组合,以取mod使用Lucas定理: Lucas(n,m,p) = C[n%p][m%p] × Lucas(n/p,m/ ...
- hdu3037 Saving Beans
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Pro ...
- hdu 3037——Saving Beans
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- hdu3037 Saving Beans(Lucas定理)
hdu3037 Saving Beans 题意:n个不同的盒子,每个盒子里放一些球(可不放),总球数<=m,求方案数. $1<=n,m<=1e9,1<p<1e5,p∈pr ...
- poj—— 3037 Saving Beans
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- HDU 3073 Saving Beans
Saving Beans Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original I ...
随机推荐
- .NET Core如何配置TLS Cipher(套件)?
前言 前不久我发表了一篇关于TLS协议配置被我钻了空子,经过第三方合作伙伴验证,针对此TLS协议存在不安全套件,急催速速解决,那么我们本篇开始继续整活!第三方合作伙伴对平台安全严苛要求,我们已连续发版 ...
- LeetCode缺失的第一个正数
LeetCode 缺失的第一个正数 题目描述 给你一个未排序的整数数组 nums,请你找出其中没有出现的最小的正整数. 进阶:你可以实现时间复杂度为 O(n)并且只使用常数级别额外空间的解决方案吗? ...
- URL+http协议
- go 代理
环境变量中设置 #GO111MODULE=auto GOPROXY=https://goproxy.io 如果不第一次,则在命令行设置 go env -w GO111MODULE=on go env ...
- 【C/C++】引用&的含义/语法/作为函数参数/函数返回值/本质/常量引用
含义 引用不产生副本,只是给原变量起了别名. 对引用变量的操作就是对原变量的操作. 基本语法 数据类型 &别名 = 原名 e.g. int a = 10; int &b = a; // ...
- 匿名内部类与lamda表达式
1.为什么要使用lamda表达式 从JDK1.8开始为了简化使用者进行代码开发,专门提供有Lambda表达式的支持,利用此操作形式可以实现函数式的编程,对于函数式编程比较著名的语言:haskell,S ...
- Nginx模块之stub_status
目录 一.介绍 二.使用 三.参数 一.介绍 Nginx中的stub_status模块主要用于查看Nginx的一些状态信息. 当前默认在nginx的源码文件中,不需要单独下载 二.使用 本模块默认是不 ...
- Mac配置apache,mysql
===========Apache=============================== 1. 启动关闭Apache MAC系统已经预装了apache,启动.关闭.查看版本等命令如下: 启动a ...
- IOS 委托代理(delegate)实现页面传值
LvesLi原创,转载请注明原文链接谢谢 http://www.androiddev.net/lvesli_delegate/ 委托是指给一个对象提供机会对另一对象中的变化做出反应或者相应另一个对 ...
- WHUCTF PWN题目
花了大概两天时间来做WHUCTF的题目,第一次排名这么靠前.首先感谢武汉大学举办这次萌新赛,也感谢fmyy的师傅的耐心指导,让我第一次做出堆的题目来. pwnpwnpwn 这是一道栈题目,32位程序, ...