Saving Beans

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4153    Accepted Submission(s): 1607

Problem Description
Although
winter is far away, squirrels have to work day and night to save beans.
They need plenty of food to get through those long cold days. After
some time the squirrel family thinks that they have to solve a problem.
They suppose that they will save beans in n different trees. However,
since the food is not sufficient nowadays, they will get no more than m
beans. They want to know that how many ways there are to save no more
than m beans (they are the same) in n trees.

Now they turn to you
for help, you should give them the answer. The result may be extremely
huge; you should output the result modulo p, because squirrels can’t
recognize large numbers.
 
Input
The first line contains one integer T, means the number of cases.

Then
followed T lines, each line contains three integers n, m, p, means that
squirrels will save no more than m same beans in n different trees, 1
<= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to
be a prime.
 
Output
You should output the answer modulo p.
 
Sample Input
2
1 2 5
2 1 5
 
Sample Output
3
3

Hint

Hint

For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

 思路:隔板法+lucas定理;
 题意:在n个树上放小于m个苹果有多少种方案;
 首先我们先考虑放m个苹果在n棵树上有多少种方案,问题转化为求x1+x2+...xn=m的方案数。
 这个就可以用隔板法来求,那么就是C(n+m-1,n-1)=C(n+m-1,m);
 那么答案就是C(n-1,0)+C(n,1)+C(n+1,2)+...C(n+m-1,m);
 根据杨辉三角上式等于C(n,0)+C(n,1)+C(n+1,2)+...C(n+m-1,m);逐项两两合并就可以得到C(n+m,m);
 那么由于primep比较小,并且n+m比较大,所以用lucas定理去求;

 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<stdlib.h>
6 #include<queue>
7 #include<map>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 LL quick(LL n,LL m,LL mod);
12 LL lucas(LL n,LL m,LL mod);
13 LL a[100005];
14 int main(void)
15 {
16 int i,j,k;
17 LL x,y,z;
18 scanf("%d",&k);
19 while(k--)
20 {
21 scanf("%lld %lld %lld",&x,&y,&z);
22 a[0]=1;
23 a[1]=1;
24 for(i=2; i<=z; i++)
25 {
26 a[i]=a[i-1]*i;
27 a[i]%=z;
28 }
29 LL n=(x+y);
30 LL m=x;
31 LL ask=lucas(m,n,z);
32 printf("%lld\n",ask%z);
33 }
34 return 0;
35 }
36 LL quick(LL n,LL m,LL mod)
37 {
38 LL ans=1;
39 while(m)
40 {
41 if(m&1)
42 {
43 ans=ans*n%mod;
44 }
45 n=n*n%mod;
46 m/=2;
47 }
48 return ans;
49 }
50 LL lucas(LL n,LL m,LL mod)
51 {
52 if(n==0)
53 {
54 return 1;
55 }
56 else
57 {
58 LL x1=n/mod;
59 LL x2=m/mod;
60 LL t1=n%mod;
61 LL t2=m%mod;
62 LL t3=a[t2-t1]*a[t1]%mod;
63 if(t2<t1)return 0;
64 LL nit3=quick(t3,mod-2,mod);
65 return (nit3*a[t2]%mod*lucas(x1,x2,mod)%mod)%mod;
66 }
67 }

Saving Beans(hud3037)的更多相关文章

  1. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  2. hdu 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  4. HDOJ 3037 Saving Beans

    如果您有n+1树,文章n+1埋不足一棵树m种子,法国隔C[n+m][m] 大量的组合,以取mod使用Lucas定理: Lucas(n,m,p) = C[n%p][m%p] × Lucas(n/p,m/ ...

  5. hdu3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Pro ...

  6. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  7. hdu3037 Saving Beans(Lucas定理)

    hdu3037 Saving Beans 题意:n个不同的盒子,每个盒子里放一些球(可不放),总球数<=m,求方案数. $1<=n,m<=1e9,1<p<1e5,p∈pr ...

  8. poj—— 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tot ...

  9. HDU 3073 Saving Beans

    Saving Beans Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original I ...

随机推荐

  1. 1.TwoSum-Leetcode

    #include<iostream> #include<algorithm> #include<map> using namespace std; class So ...

  2. kubernetes 用到的工具及组件

    kubernetes 用到的工具及组件,将所有的组件下载后放到/usr/local/bin目录下(记得chmod a+x /usr/local/bin/*).所有的组件,原则上都用最新的,如果遇到不支 ...

  3. “equals”有值 与 “==”存在 “equals”只是比较值是否相同,值传递,==地址传递,null==a,避免引发空指针异常,STRING是一个对象==null,对象不存在,str.equals("")对象存在但是包含字符‘''

    原文链接:http://www.cnblogs.com/lezhou2014/p/3955536.html "equals" 与 "==" "equa ...

  4. PC端页面转换成手机端页面的分辨率问题的理解

    PC端页面转换成手机端页面的分辨率问题的理解 px vw rem 假如就以a4纸模式为设计图 ,在a3纸模式中设计,然后设计出来展示在不同的a4纸模式上 通常是 750px -> 100vw / ...

  5. 如何用Serverless让SaaS获得更灵活的租户隔离和更优的资源开销

    关于SaaS和Serverless,相信关注我的很多读者都已经不陌生,所以这篇不会聊它们的技术细节,而将重点放在SaaS软件架构中引入Serverless之后,能给我们的SaaS软件带来多大的收益. ...

  6. Springboot整合MongoDB(Eclipse版本)

    IDEA版本其实也差不多的,大同小异 简单Demo地址: https://blog.csdn.net/shirukai/article/details/82152243 Springboot项目整合M ...

  7. 安装MySQL5.7.26教程图解

    安装MySQL5.7.26教程图解 1.安装mysql所需的yum源 yum -y install gcc-c++ ncurses-devel cmake make perl gcc autoconf ...

  8. pwnable_start

    第一次接触这种类型的题,例行检查一下 题目是32位 没有开启nx保护可以通过shellocode来获得shell 将题目让如ida中 由于第一次碰到这种题,所以我会介绍的详细一点, 可以看到程序中调用 ...

  9. [BUUCTF]REVERSE——CrackRTF

    CrackRTF 附件 步骤: 例行查壳儿,32位程序,无壳儿 32位ida载入,main函数开始分析程序 破解第一个密码 sub_40100A()是一个加密函数,具体的写的算法没去分析,但是Cryp ...

  10. [BUUCTF]PWN——level4

    level4 附件 步骤: 例行检查,32位程序,开启了NX保护 运行一下程序,看看大概的情况 32位ida载入,首先检索程序里的字符串,根据上一步运行看到的字符串进行跳转 输入点在function里 ...