编辑距离

在计算机科学中,编辑距离是一种量化两个字符串差异程度的方法,也就是计算从一个字符串转换成另外一个字符串所需要的最少操作步骤。不同的编辑距离中定义了不同操作的集合。比较常用的莱温斯坦距离(Levenshtein distance)中定义了:删除、插入、替换操作。

算法描述

定义edit(i, j),表示第一个字符串的长度为i的子串到第二个字符串长度为j的子串的编辑距离。

  • 如果用递归的算法,自顶向下依次简化问题:

if (i < 0 && j < 0), edit(i, j) = 0;

if (i < 0 && j >= 0), edit(i, j) = j;

if (i >= 0 && j < 0), edit(i, j) = i;

if (i >= 0 && j >= 0), edit(i, j) = min{edit(i - 1, j) + 1, edit(i, j - 1) + 1, edit(i - 1, j - 1) + f(i, j)}, 如果第一个字符串的第i个字符等于第二个字符串的第j个字符,那么f(i, j) = 1;否则,f(i, j) = 0。

因为字符串的开始坐标是从0开始的,然后利用递归的时候判断条件应该和0比较。

  • 如果用动态规划的思想,自底向上依次计算,保留已经计算的结果:

table[i][j]表示第一个字符串的长度为i的子串与第二个字符串长度为j的子串的距离。

if (j == 0), table[0][j] = j;

if (i == 0), table[i][0] = i;

if (i >= 1 && j >= 1), table[i][j] = min({table[i - 1][j] + 1, table[i][j - 1] + 1, table[i - 1][j - 1] + (s1[i - 1] == s2[j - 1] ? 0 : 1)});

具体实现

#include <iostream>

using namespace std;

class EditDistance {

public:
int edit(string s1, string s2, int len1, int len2);
int dp_edit_distance(string s1, string s2, int len1, int len2); }; // 递归
int EditDistance::edit(string s1, string s2, int len1, int len2) {
if (len1 < 0 && len2 < 0)
return 0;
if (len1 < 0 && len2 >= 0)
return len2 + 1;
if (len1 >= 0 && len2 < 0)
return len1 + 1;
if (len1 >= 0 && len2 >= 0) {
return min(min(edit(s1, s2, len1 - 1, len2) + 1, edit(s1, s2, len1, len2 - 1) + 1),
edit(s1, s2, len1 - 1, len2 - 1) + (s1[len1] == s2[len2] ? 0 : 1) );
}
} // 动态规划
int EditDistance::dp_edit_distance(string s1, string s2, int len1, int len2) {
int max1 = s1.size();
int max2 = s2.size();
int** table = new int* [max1 + 1];
for (int i = 0; i < max1 + 1; i++) {
table[i] = new int[max2 + 1];
} for (int i = 0; i < max1 + 1; i++) {
table[i][0] = i;
}
for (int j = 0; j < max2 + 1; j++) {
table[0][j] = j;
} for (int i = 1; i < max1 + 1; i++) {
for (int j = 1; j < max2 + 1; j++) {
table[i][j] = min(min(table[i - 1][j] + 1, table[i][j - 1] + 1), table[i - 1][j - 1] + (s1[i - 1] == s2[j - 1] ? 0 : 1)); //注意s1[i - 1]不是s1[i]
}
} int result = table[max1][max2]; // 释放内存
for(int i = 0; i < max1 + 1; i++)
{
delete[] table[i];
table[i] = NULL;
}
delete[] table;
table = NULL; return result;
} int main() {
string str1 = "failingppp";
string str2 = "sailnbbb";
EditDistance* editDistance = new EditDistance();
clock_t start, end;
start = clock(); for (int i = 0; i < 1000000; i++) {
//int result = editDistance->edit(str1, str2, str1.size() - 1, str2.size() - 1);
int result = editDistance->dp_edit_distance(str1, str2, str1.size() - 1, str2.size() - 1);
//cout << "edit distance of " << str1 << " and " << str2 << " is : " << result << endl;
}
end = clock();
cout << "time1: " << (end - start) / 1000000.0 << endl; start = clock();
for (int i = 0; i < 100; i++) {
int result = editDistance->edit(str1, str2, str1.size() - 1, str2.size() - 1);
//int result = editDistance->dp_edit_distance(str1, str2, str1.size() - 1, str2.size() - 1);
//cout << "edit distance of " << str1 << " and " << str2 << " is : " << result << endl;
}
end = clock();
cout << "time2: " << (end - start) / 1000000.0 << endl; return 0;

说明:通过上面程序对比,可以发现动态规划明显快于递归的,因为递归需要反复的程序进入与返回操作,而动态保留了之前计算的结果。

参考文献

编辑距离及编辑距离算法

Edit distance

编辑距离——Edit Distance的更多相关文章

  1. 利用编辑距离(Edit Distance)计算两个字符串的相似度

    利用编辑距离(Edit Distance)计算两个字符串的相似度 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可 ...

  2. 行编辑距离Edit Distance——动态规划

    题目描写叙述: 给定一个源串和目标串.可以对源串进行例如以下操作:  1. 在给定位置上插入一个字符  2. 替换随意字符  3. 删除随意字符 写一个程序.返回最小操作数,使得对源串进行这些操作后等 ...

  3. [Swift]LeetCode72. 编辑距离 | Edit Distance

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  4. [Leetcode 72]编辑距离 Edit Distance

    [题目] Given two words word1 and word2, find the minimum number of operations required to convert word ...

  5. 编辑距离Edit Distance 非常典型的DP类型题目

    https://leetcode.com/problems/edit-distance/?tab=Description 真的非常好,也非常典型. https://discuss.leetcode.c ...

  6. [LeetCode] One Edit Distance 一个编辑距离

    Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...

  7. stanford NLP学习笔记3:最小编辑距离(Minimum Edit Distance)

    I. 最小编辑距离的定义 最小编辑距离旨在定义两个字符串之间的相似度(word similarity).定义相似度可以用于拼写纠错,计算生物学上的序列比对,机器翻译,信息提取,语音识别等. 编辑距离就 ...

  8. Edit Distance编辑距离(NM tag)- sam/bam格式解读进阶

    sam格式很精炼,几乎包含了比对的所有信息,我们平常用到的信息很少,但特殊情况下,我们会用到一些较为生僻的信息,关于这些信息sam官方文档的介绍比较精简,直接看估计很难看懂. 今天要介绍的是如何通过b ...

  9. Minimum edit distance(levenshtein distance)(最小编辑距离)初探

    最小编辑距离的定义:编辑距离(Edit Distance),又称Levenshtein距离.是指两个字串之间,由一个转成还有一个所需的最少编辑操作次数.许可的编辑操作包含将一个字符替换成还有一个字符. ...

随机推荐

  1. Lua屏蔽对象方法和恢复的方法

    背景 对于OO思想实现的类, 对于某些场景需要屏蔽某些方法, 不让调用.过了这段场景, 就恢复这些类的方法, 可以调用. 例如: 工厂具有开工方法, 但是在晚上不允许开工, 所有在晚上这段时间, 见开 ...

  2. Spark&Hadoop:scala编写spark任务jar包,运行无法识别main函数,怎么办?

    昨晚和同事一起看一个scala写的程序,程序都写完了,且在idea上debug运行是ok的.但我们不能调试的方式部署在客户机器上,于是打包吧.打包时,我们是采用把外部引入的五个包(spark-asse ...

  3. SpringMVC参数自动绑定

    SpringMVC的各种参数绑定方式 1. 基本数据类型(以int为例,其他类似):Controller代码: @RequestMapping("saysth.do") publi ...

  4. c语言的一个简单的链表

    此程序为作业题: 但不忍丢弃成果: 所以记一下: 哦,对了,有一个易错点:在链表里,字符要用字符数组,不能用单个字符. #include<stdio.h>#include<stdio ...

  5. ADT(Android Developer Tools) GIT功能不全,远程提交的时候账户密码不能保存账户和密码解决方式

    需要安装Eclipse的GIT插件EGIT http://download.eclipse.org/egit/updates/

  6. Shopex4.85商派2014年商业模板和商业插件共600多套仅售600元送分销王2代SEO排名神具。

    这批shopex商业插 件+模板都是本人从官方模板网站收购.高价.交换.以及收藏得来.本人因现实工作太忙不得不转手出售这批源代码,限时低价出售给和我一样从事shopex 系统网店电子商务的兄弟姐妹们, ...

  7. 使用Quicktime 实现视频直播(Live video using Quicktime) (转)

    Quicktime是一个跨浏览器的播放插件,可以实现RTSP视频直播,可用于电视直播或视频监控平台.本文主要讲了关于播放器如何实现直播.事件响应.播放器全屏.动态修改播放路径等问题. 需要准备的软件: ...

  8. YUM源

    由于自己想做一个简单的博客玩玩,需要去搭建apache,mysql和php,如果只是用rpm安装包的话,安装的速度太慢不说,最主要的是包之间的关联太让人蛋疼了,所以最好还是是用yum来安装吧,当然这只 ...

  9. Java多线程开发系列之四:玩转多线程(线程的控制2)

    在上节的线程控制(详情点击这里)中,我们讲解了线程的等待join().守护线程.本节我们将会把剩下的线程控制内容一并讲完,主要内容有线程的睡眠.让步.优先级.挂起和恢复.停止等. 废话不多说,我们直接 ...

  10. Java多线程学习(二)

    一.定义产生返回值的任务 在上一篇文的介绍中,我们知道了定义任务通常的方法是定义一个实现Runnable接口的类,这个类被我们成为任务.然而也很容易注意到,任务的最重要的一个方法就是run( )方法, ...