Evacuation Plan-POJ2175最小费用消圈算法
| Time Limit: 1000MS | Memory Limit: 65536K | 
|---|
Special Judge
Description
The City has a number of municipal buildings and a number of fallout shelters that were build specially to hide municipal workers in case of a nuclear war. Each fallout shelter has a limited capacity in terms of a number of people it can accommodate, and there’s almost no excess capacity in The City’s fallout shelters. Ideally, all workers from a given municipal building shall run to the nearest fallout shelter. However, this will lead to overcrowding of some fallout shelters, while others will be half-empty at the same time.
To address this problem, The City Council has developed a special evacuation plan. Instead of assigning every worker to a fallout shelter individually (which will be a huge amount of information to keep), they allocated fallout shelters to municipal buildings, listing the number of workers from every building that shall use a given fallout shelter, and left the task of individual assignments to the buildings’ management. The plan takes into account a number of workers in every building - all of them are assigned to fallout shelters, and a limited capacity of each fallout shelter - every fallout shelter is assigned to no more workers then it can accommodate, though some fallout shelters may be not used completely.
The City Council claims that their evacuation plan is optimal, in the sense that it minimizes the total time to reach fallout shelters for all workers in The City, which is the sum for all workers of the time to go from the worker’s municipal building to the fallout shelter assigned to this worker.
The City Mayor, well known for his constant confrontation with The City Council, does not buy their claim and hires you as an independent consultant to verify the evacuation plan. Your task is to either ensure that the evacuation plan is indeed optimal, or to prove otherwise by presenting another evacuation plan with the smaller total time to reach fallout shelters, thus clearly exposing The City Council’s incompetence.  
During initial requirements gathering phase of your project, you have found that The City is represented by a rectangular grid. The location of municipal buildings and fallout shelters is specified by two integer numbers and the time to go between municipal building at the location (Xi, Yi) and the fallout shelter at the location (Pj, Qj) is Di,j = |Xi - Pj| + |Yi - Qj| + 1 minutes.
Input
The input consists of The City description and the evacuation plan description. The first line of the input file consists of two numbers N and M separated by a space. N (1 ≤ N ≤ 100) is a number of municipal buildings in The City (all municipal buildings are numbered from 1 to N). M (1 ≤ M ≤ 100) is a number of fallout shelters in The City (all fallout shelters are numbered from 1 to M).
The following N lines describe municipal buildings. Each line contains there integer numbers Xi, Yi, and Bi separated by spaces, where Xi, Yi (-1000 ≤ Xi, Yi ≤ 1000) are the coordinates of the building, and Bi (1 ≤ Bi ≤ 1000) is the number of workers in this building.
The description of municipal buildings is followed by M lines that describe fallout shelters. Each line contains three integer numbers Pj, Qj, and Cj separated by spaces, where Pi, Qi (-1000 ≤ Pj, Qj ≤ 1000) are the coordinates of the fallout shelter, and Cj (1 ≤ Cj ≤ 1000) is the capacity of this shelter.
The description of The City Council’s evacuation plan follows on the next N lines. Each line represents an evacuation plan for a single building (in the order they are given in The City description). The evacuation plan of ith municipal building consists of M integer numbers Ei,j separated by spaces. Ei,j (0 ≤ Ei,j ≤ 1000) is a number of workers that shall evacuate from the ith municipal building to the jth fallout shelter.
The plan in the input file is guaranteed to be valid. Namely, it calls for an evacuation of the exact number of workers that are actually working in any given municipal building according to The City description and does not exceed the capacity of any given fallout shelter.
Output
If The City Council’s plan is optimal, then write to the output the single word OPTIMAL. Otherwise, write the word SUBOPTIMAL on the first line, followed by N lines that describe your plan in the same format as in the input file. Your plan need not be optimal itself, but must be valid and better than The City Council’s one.
Sample Input
3 4 
-3 3 5 
-2 -2 6 
2 2 5 
-1 1 3 
1 1 4 
-2 -2 7 
0 -1 3 
3 1 1 0 
0 0 6 0 
0 3 0 2
Sample Output
SUBOPTIMAL 
3 0 1 1 
0 0 6 0 
0 4 0 1 
Source
Northeastern Europe 2002
题意:有n个市政大楼和m个避难所,每一个市政大楼都有一定的人数,而每一个避难所也有一定的容量,从某个市政大楼到某个避难所的花费是曼哈顿距离+1,现在委员会给你一个有效的疏散计划,判断还有没有这个计划更优的方案。
分析:开始理解题意的时候,以为用最小费用跑一次,判断最小费用与所给的答案,但是TLE,后来在讨论中看到最小费用会超时,说是用消圈的方式判断是不是还有更优解。
消圈定理:残留网络里如果存在负费用圈,那么当前流不是最小费用流。
负圈有必要解释一下:费用总和是负数,且每条边的剩余流量大于0
按照所给的信息建图。
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int Max = 210;
typedef struct node
{
    int x,y,num;
}Point;
int Map[Max][Max],Cost[Max][Max],Num[Max];
Point  Z[Max],B[Max];
int dis[Max],pre[Max],Du[Max];
bool vis[Max];
int n,m,s,t;
int ok(Point a,Point b)
{
    return abs(a.x-b.x)+abs(a.y-b.y)+1;
}
int SPFA() //判断是不是有负圈
{
    for(int i=0;i<=t;i++)
    {
        dis[i] = INF;
        pre[i] = -1;
        Du[i] = 0;
        vis[i]=false;
    }
    queue<int>Q;
    dis[t] = 0,vis[t] = true;
    Q.push(t);
    Du[t] = 1;
    while(!Q.empty())
    {
        int u = Q.front();
        Q.pop();
        for(int i=0;i<=t;i++)
        {
            if(Map[u][i]&&dis[i]>dis[u]+Cost[u][i])
            {
                dis[i] = dis[u]+Cost[u][i];
                pre[i] = u;
                if(!vis[i])
                {
                    vis[i]=true;
                    Q.push(i);
                    Du[i]++;
                    if(Du[i]>t)
                    {
                        return i;
                    }
                }
            }
        }
        vis[u]=false;
    }
    return -1;
}
int main()
{
    int num;
    while(~scanf("%d %d",&n,&m))
    {
        s= 0, t =n+m+1;
        memset(Map,0,sizeof(Map));
        memset(Cost,0,sizeof(Cost));
        memset(Num,0,sizeof(Num));
        for(int i=1;i<=n;i++) scanf("%d %d %d",&Z[i].x,&Z[i].y,&Z[i].num);
        for(int i=1;i<=m;i++) scanf("%d %d %d",&B[i].x,&B[i].y,&B[i].num);
        for(int i=1;i<=n;i++)//市政与避难所之间建图
        {
            for(int j=1;j<=m;j++)
            {
                Cost[i][j+n] = ok(Z[i],B[j]);
                Cost[j+n][i] = -Cost[i][j+n];
                Map[i][j+n] = Z[i].num;
            }
        }
        int ans = 0;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                scanf("%d",&num);
                Map[i][j+n]-= num;
                Map[j+n][i] = num;
                Num[j]+=num;
            }
        }
        for(int i=1;i<=m;i++)
        {
            Map[i+n][t] = B[i].num-Num[i];
            Map[t][i+n] = Num[i];
        }
        ans = SPFA();
        if(ans==-1)
        {
            printf("OPTIMAL\n");
        }
        else
        {
            printf("SUBOPTIMAL\n");
            memset(vis,false,sizeof(vis));
            int v = ans;
            while(!vis[v])
            {
                vis[v]=true;
                v = pre[v];
            }
            ans  = v;
            do
            {
                Map[pre[v]][v] --;
                Map[v][pre[v]]++;
                v = pre[v];
            }
            while(v!=ans);
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=m;j++)
                {
                    if(j!=1)
                    {
                        printf(" ");
                    }
                    printf("%d",Map[j+n][i]);
                }
                printf("\n");
            }
        }
    }
    return 0;
}
Evacuation Plan-POJ2175最小费用消圈算法的更多相关文章
- poj 2175 Evacuation Plan 最小费用流判定,消圈算法
		题目链接 题意:一个城市有n座行政楼和m座避难所,现发生核战,要求将避难所中的人员全部安置到避难所中,每个人转移的费用为两座楼之间的曼哈顿距离+1,题目给了一种方案,问是否为最优方案,即是否全部的人员 ... 
- POJ 2175:Evacuation Plan(费用流消圈算法)***
		http://poj.org/problem?id=2175 题意:有n个楼,m个防空洞,每个楼有一个坐标和一个人数B,每个防空洞有一个坐标和容纳量C,从楼到防空洞需要的时间是其曼哈顿距离+1,现在给 ... 
- 最小费用流判负环消圈算法(poj2175)
		Evacuation Plan Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3384 Accepted: 888 ... 
- 【图论】Floyd消圈算法
		毫无卵用的百度百科 Definition&Solution 对于一个给定的链表,如何判定它是否存在环以及环的长度问题,可以使用Floyd消圈算法求出. 从某种意义上来讲,带环的链表在本质上是一 ... 
- POJ 2157 Evacuation Plan [最小费用最大流][消圈算法]
		---恢复内容开始--- 题意略. 这题在poj直接求最小费用会超时,但是题意也没说要求最优解. 根据线圈定理,如果一个跑完最费用流的残余网络中存在负权环,那么顺着这个负权环跑流量为1那么会得到更小的 ... 
- poj2175费用流消圈算法
		题意: 有n个建筑,每个建筑有ai个人,有m个避难所,每个避难所的容量是bi,ai到bi的费用是|x1-x2|+|y1-y2|+1,然后给你一个n*m的矩阵,表示当前方案,问当前避难方案是否 ... 
- POJ2175 Evacuation Plan
		Evacuation Plan Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4617 Accepted: 1218 ... 
- nyoj 712 探 寻 宝 藏--最小费用最大流
		问题 D: 探 寻 宝 藏 时间限制: 1 Sec 内存限制: 128 MB 题目描述 传说HMH大沙漠中有一个M*N迷宫,里面藏有许多宝物.某天,Dr.Kong找到了迷宫的地图,他发现迷宫内处处有 ... 
- poj 2195 二分图带权匹配+最小费用最大流
		题意:有一个矩阵,某些格有人,某些格有房子,每个人可以上下左右移动,问给每个人进一个房子,所有人需要走的距离之和最小是多少. 貌似以前见过很多这样类似的题,都不会,现在知道是用KM算法做了 KM算法目 ... 
随机推荐
- XDebug 自动开启PHP Stack Trace, 导致PHP Log 超1G
			昨天早上突然发现测试服务器空间满了,用du挨个文件夹查看,发现是php debug log占地极大,有的log直接有1G,打开后发现极其多的php stack trace. 立刻到主服务器查看,主服务 ... 
- 【原创】Android selector选择器无效或无法正常显示的一点研究
			想将LinearLayout作为一个按钮,加上一个动态背景,按下的时候,背景变色,这个理所当然应该使用selector背景选择器来做: <LinearLayout android:id=&quo ... 
- iOS:基于CoreText的排版引擎
			一.CoreText的简介 CoreText是用于处理文字和字体的底层技术.它直接和Core Graphics(又被称为Quartz)打交道.Quartz是一个2D图形渲染引擎,能够处理OSX和iOS ... 
- vim - buffer
			1. buffer switching http://vim.wikia.com/wiki/Easier_buffer_switching :buffer:ls:files 2. vim defaul ... 
- Python之路----------random模块
			随机数模块: import random #随机小数 print(random.random()) #随机整数 print(random.randint(1,5))#他会打印5 #随机整数 print ... 
- 一个DNS统计,RCFs,工具站点
			RCFs http://www.statdns.com/rfc/ DNS resources A collection of DNS related resources DNS Servers Nam ... 
- .NET XML序列化与反序列化
			闲着没事,写了两个通用的XML序列化与反序列化的方法. 贴出来当作笔记吧! /// <summary> /// XML序列化 /// </summary> /// <ty ... 
- PAT树_层序遍历叶节点、中序建树后序输出、AVL树的根、二叉树路径存在性判定、奇妙的完全二叉搜索树、最小堆路径、文件路由
			03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top do ... 
- XPath 简介
			XPath 是一门在 XML 文档中查找信息的语言.XPath 用于在 XML 文档中通过元素和属性进行导航. 在学习之前应该具备的知识: 在您继续学习之前,应该对下面的知识有基本的了解: HTML ... 
- 【皇甫】☀IOC和AOP的拓展实例
			<!--构造器注入 --> <bean id="user1" class="cn.happy.entity.User"> <con ... 
