Relocation
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2631   Accepted: 1075

Description

Emma and Eric are moving to their new house they bought after returning from their honeymoon. Fortunately, they have a few friends helping them relocate. To move the furniture, they only have two compact cars, which complicates everything a bit. Since the furniture does not fit into the cars, Eric wants to put them on top of the cars. However, both cars only support a certain weight on their roof, so they will have to do several trips to transport everything. The schedule for the move is planed like this:

  1. At their old place, they will put furniture on both cars.
  2. Then, they will drive to their new place with the two cars and carry the furniture upstairs.
  3. Finally, everybody will return to their old place and the process continues until everything is moved to the new place.

Note, that the group is always staying together so that they can have more fun and nobody feels lonely. Since the distance between the houses is quite large, Eric wants to make as few trips as possible.

Given the weights wi of each individual piece of furniture and the capacities C1 and C2 of the two cars, how many trips to the new house does the party have to make to move all the furniture? If a car has capacity C, the sum of the weights of all the furniture it loads for one trip can be at most C.

Input

The first line contains the number of scenarios. Each scenario consists of one line containing three numbers nC1 and C2C1 and C2 are the capacities of the cars (1 ≤ Ci ≤ 100) and n is the number of pieces of furniture (1 ≤ n ≤ 10). The following line will contain n integers w1, …, wn, the weights of the furniture (1 ≤ wi ≤ 100). It is guaranteed that each piece of furniture can be loaded by at least one of the two cars.

Output

The output for every scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. Then print a single line with the number of trips to the new house they have to make to move all the furniture. Terminate each scenario with a blank line.

Sample Input

2
6 12 13
3 9 13 3 10 11
7 1 100
1 2 33 50 50 67 98

Sample Output

Scenario #1:
2 Scenario #2:
3

Source

TUD Programming Contest 2006, Darmstadt, Germany
 
题目意思:
有两辆容量分别为c1和c2的车,有n个体积为v[i]的物品,现用车拉物品,最少用多少次把所有物品拉完。
 
思路:
状压物品,记录所有可以一次性拉的物品组合二进制状态,那么答案肯定是由这些记录过的状态组合而成的,dp即可。
 
代码:
 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
#include <queue>
#include <cmath>
#include <set>
using namespace std; #define N 100005
#define inf 999999999 int n, c1, c2;
int w[];
int num[]; bool solve(int nn){
int i, j, k;
int sum=;
bool visited[];
memset(visited,false,sizeof(visited));
visited[]=true;
for(i=;i<n;i++){
if((<<i)&nn){
sum+=w[i];
for(j=c1-w[i];j>=;j--){//DP
if(visited[j])
visited[j+w[i]]=true;
}
}
}
for(i=;i<=c1;i++){
if(visited[i]&&sum-i<=c2)
return true;
}
return false;
} main()
{
int t, i, j, k;
int kase=;
cin>>t;
while(t--){
scanf("%d %d %d",&n,&c1,&c2);
for(i=;i<n;i++) scanf("%d",&w[i]);
int len=;
int cnt=(<<n)-;
for(i=;i<=cnt;i++){
if(solve(i))
num[len++]=i;
}
int dp[];
for(i=;i<=cnt;i++) dp[i]=inf;
dp[]=;
for(i=;i<len;i++){//DP
for(j=cnt;j>=;j--){
if(!(j&num[i])){
dp[j|num[i]]=min(dp[j|num[i]],dp[j]+);
}
}
}
printf("Scenario #%d:\n%d\n\n",kase++,dp[cnt]);
}
}

POJ 2923 状压好题的更多相关文章

  1. poj 2923 状压dp+01背包

    好牛b的思路 题意:一系列物品,用二辆车运送,求运送完所需的最小次数,两辆车必须一起走 解法为状态压缩DP+背包,本题的解题思路是先枚举选择若干个时的状态,总状态量为1<<n,判断这些状态 ...

  2. POJ 3254 (状压DP) Corn Fields

    基础的状压DP,因为是将状态压缩到一个整数中,所以会涉及到很多比较巧妙的位运算. 我们可以先把输入中每行的01压缩成一个整数. 判断一个状态是否有相邻1: 如果 x & (x << ...

  3. POJ 3254 状压DP

    题目大意: 一个农民有一片n行m列 的农场   n和m 范围[1,12]  对于每一块土地 ,1代表可以种地,0代表不能种. 因为农夫要种草喂牛,牛吃草不能挨着,所以农夫种菜的每一块都不能有公共边. ...

  4. poj 1170状压dp

    题目链接:https://vjudge.net/problem/POJ-1170 题意:输入n,表示有那种物品,接下来n行,每行a,b,c三个变量,a表示物品种类,b是物品数量,c代表物品的单价.接下 ...

  5. POJ 2411 状压DP经典

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16771   Accepted: 968 ...

  6. poj 3254 状压dp入门题

    1.poj 3254  Corn Fields    状态压缩dp入门题 2.总结:二进制实在巧妙,以前从来没想过可以这样用. 题意:n行m列,1表示肥沃,0表示贫瘠,把牛放在肥沃处,要求所有牛不能相 ...

  7. POJ 3254 状压DP(基础题)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17749   Accepted: 9342 Desc ...

  8. Islands and Bridges(POJ 2288状压dp)

    题意:给你一个图和每个点的价值,边权值为连接两点权值的积,走哈密顿通路,若到达的点和上上个点相连则价值加三点乘积,求哈密顿通路的最大价值,和最大价值哈密顿通路的条数. 分析:开始看这个题很吓人,但想想 ...

  9. poj 1185(状压dp)

    题目链接:http://poj.org/problem?id=1185 思路:状态压缩经典题目,dp[i][j][k]表示第i行状态为j,(i-1)行状态为k时最多可以放置的士兵个数,于是我们可以得到 ...

随机推荐

  1. iOS 如何在一个已经存在多个project的workspace中引入cocoapods管理第三方类库

    一种新的第三方库管理工具:Carthage 如何使用Carthage管理iOS依赖库 Podfile Syntax Reference v1.1.0.rc.3 https://guides.cocoa ...

  2. scrapy基础教程

    1. 安装Scrapy包 pip install scrapy, 安装教程 Mac下可能会出现:OSError: [Errno 13] Permission denied: '/Library/Pyt ...

  3. pinpoint 安装部署

    .markdown-preview:not([data-use-github-style]) { padding: 2em; font-size: 1.2em; color: rgb(171, 178 ...

  4. 解决iphone5s,iphone6不能使用luajit及luac的问题

    做手游有小段时间了,感觉坤哥给这么多的机会.一直都比较忙项目的事,比较没时间去写点东西做点记录.想想还是写点开发问题记录比较好,可以很简短,也可以很有用. 我们项目采用的cocos2d-x的引擎,之前 ...

  5. sublime-text3 3059基本配置

    1.下载安装官方版注册机语言包 参考安装: http://www.xiumu.org/note/sublime-text-3.shtml 2.插件 Package ControlConvertToUT ...

  6. (十六)getsockname()

    简述: 获取一个套接口的本地名字. #include <winsock.h> int PASCAL FAR getsockname( SOCKET s, struct sockaddr F ...

  7. 121. Best Time to Buy and Sell Stock

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  8. jquery TypeError: $(...).live is not a functio,动态添加class的点击事件处理

    jq版本更新后无live函数的处理.TypeError: $(...).live is not a function jquery live函数语法 jquery版本更新, 发现一个问题: jq自带的 ...

  9. flask配置qq邮箱发送邮件

    1.第三方登录qq邮箱不是使用邮箱密码,而是使用独立的授权码: 2.开始在python程序中使用os.environ.get()一直无法获取到环境变量,即使是用source命令重新加载配置文件后使用e ...

  10. angular遇到问题

    一.一个js中只有一个angunlar.module,但可以有多个controller,从而控制多个不同的作用域,每个作用域都有独立的$scope.不同作用域之间又有$rootScope这个桥梁 二. ...