Backpropagation反向传播算法(BP算法)
1.Summary:
Apply the chain rule to compute the gradient of the loss function with respect to the inputs.
----cs231n
2.what problems to slove?
2.1introduction
神经网络的本质是一个多层的复合函数,图:

表达式为:

上面式中的Wij就是相邻两层神经元之间的权值,它们就是深度学习需要学习的参数,也就相当于直线拟合y=k*x+b中的待求参数k和b。
和直线拟合一样,深度学习的训练也有一个目标函数,这个目标函数定义了什么样的参数才算一组“好参数”,不过在机器学习中,一般是采用成本函数(cost function),然后,训练目标就是通过调整每一个权值Wij来使得cost达到最小。cost函数也可以看成是由所有待求权值Wij为自变量的复合函数,而且基本上是非凸的,即含有许多局部最小值。但实际中发现,采用我们常用的梯度下降法就可以有效的求解最小化cost函数的问题。
梯度下降法需要给定一个初始点,并求出该点的梯度向量,然后以负梯度方向为搜索方向,以一定的步长进行搜索,从而确定下一个迭代点,再计算该新的梯度方向,如此重复直到cost收敛。那么如何计算梯度呢?
假设我们把cost函数表示为, 那么它的梯度向量就等于
, 其中
表示正交单位向量。为此,我们需求出cost函数H对每一个权值Wij的偏导数。而BP算法正是用来求解这种多层复合函数的所有变量的偏导数的利器。
2.2processing (an example)
以求e=(a+b)*(b+1)的偏导为例。

为了求出a=2, b=1时,e的梯度,我们可以先利用偏导数的定义求出不同层之间相邻节点的偏导关系,如下图所示。

利用链式法则我们知道:
以及
以上图为例,节点c接受e发送的1*2并堆放起来,节点d接受e发送的1*3并堆放起来,至此第二层完毕,求出各节点总堆放量并继续向下一层发送。节点
引用:
链接:https://www.zhihu.com/question/27239198/answer/89853077
来源:知乎
著作权归作者所有,转载请联系作者获得授权。】
3.3-layer 神经网络

上面的变量都可以用矩阵表示,直接进行矩阵运算。其中dW1,dW2,db1和db2就是我们需要求的参数的梯度。
作者:龚禹pangolulu
链接:https://www.zhihu.com/question/27239198/answer/95253534
来源:知乎
著作权归作者所有,转载请联系作者获得授权。
Backpropagation反向传播算法(BP算法)的更多相关文章
- 深度学习课程笔记(三)Backpropagation 反向传播算法
深度学习课程笔记(三)Backpropagation 反向传播算法 2017.10.06 材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS1 ...
- 神经网络中误差反向传播(back propagation)算法的工作原理
注意:版权所有,转载需注明出处. 神经网络,从大学时候就知道,后面上课的时候老师也讲过,但是感觉从来没有真正掌握,总是似是而非,比较模糊,好像懂,其实并不懂. 在开始推导之前,需要先做一些准备工作,推 ...
- 反向传播(BP)算法理解以及Python实现
全文参考<机器学习>-周志华中的5.3节-误差逆传播算法:整体思路一致,叙述方式有所不同: 使用如上图所示的三层网络来讲述反向传播算法: 首先需要明确一些概念, 假设数据集\(X=\{x^ ...
- 反向传播(BP)算法
著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:刘皮皮链接:https://www.zhihu.com/question/24827633/answer/29120394来源 ...
- 神经网络中的反向传播法--bp【转载】
from: 作者:Charlotte77 出处:http://www.cnblogs.com/charlotte77/ 一文弄懂神经网络中的反向传播法——BackPropagation 最近在看深度学 ...
- [CS231n-CNN] Backpropagation(反向传播算法)
课程主页:http://cs231n.stanford.edu/ 上节讲到loss function: 引出了求导数使得loss function减小. -Back Propagation :梯度下降 ...
- [2] TensorFlow 向前传播算法(forward-propagation)与反向传播算法(back-propagation)
TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlo ...
- 神经网络与机器学习 笔记—反向传播算法(BP)
先看下面信号流图,L=2和M0=M1=M2=M3=3的情况,上面是前向通过,下面部分是反向通过. 1.初始化.假设没有先验知识可用,可以以一个一致分布来随机的挑选突触权值和阈值,这个分布选择为均值等于 ...
- stanford coursera 机器学习编程作业 exercise4--使用BP算法训练神经网络以识别阿拉伯数字(0-9)
在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(trai ...
随机推荐
- Reverse链表 非递归实现
#include<iostream> struct node{ int payload; node* next; }; void bianli(node* head){ node* ite ...
- jQuery的input 失去焦点之后,不能再获取到焦点
今天写了一个字段唯一性校验功能,验证设备仪器编号唯一,当输入编号之后 ,点击其他,失去焦点后,后台验证唯一,有过此编号,就给出提示,重新填写. 当使用ie时候,获取焦点正常 ,但是使用火狐就获取不到焦 ...
- makfile
1. Makefile 简介 Makefile 是和 make 命令一起配合使用的. 很多大型项目的编译都是通过 Makefile 来组织的, 如果没有 Makefile, 那很多项目中各种库和代码之 ...
- Django + Apache + 树莓派 搭建内网微信公众号服务器
其实早在微信开放公众号开发平台时就想弄一个自己的公众号服务器,奈何对web服务器搭建和开发一窍不通,只是注册了一下开发者帐号,并没有采取行动,万恶的拖延症. 前一年,开始接触python,打开了神奇世 ...
- 123. Best Time to Buy and Sell Stock (三) leetcode解题笔记
123. Best Time to Buy and Sell Stock III Say you have an array for which the ith element is the pric ...
- 如何使用Nginx对抗DDoS攻击?
时不时的就有客户会被DDoS一下.很多时候攻击很简单也容易封堵,但是攻击的目标是应用的时候就更难防御.在这里云端卫士介绍一下使用Nginx作为代理过滤器来封堵一些这种攻击. Apache DDoS攻击 ...
- 解决jquery1.9不支持browser对象的问题||TypeError: $.browser is undefined
在插件的源代码里插入如下代码: (function(jQuery){ if(jQuery.browser) return; jQuery.browser = {}; jQuery.browser.mo ...
- android系统启动
首页 资讯 精华 论坛 问答 博客 专栏 群组 更多 ▼ 您还未登录 ! 登录 注册 Ant space 博客 微博 相册 收藏 留言 关于我 android启动过程再研 Androi ...
- android 常见面试题以及答案
http://blog.csdn.net/bobo1808/article/details/6783344 1. 请描述下Activity的生命周期.2. 如果后台的Activity由于某 ...
- 【Java源码分析】LinkedList类
LinkedList<E> 源码解读 继承AbstractSequentialList<E> 实现List<E>, Deque<E>, Cloneabl ...