题目

Divide two integers without using multiplication, division and mod operator.

If it is overflow, return MAX_INT

链接

https://leetcode.com/problems/divide-two-integers/

答案

1、int的最大值MAX_INT为power(2,31)-1 = 2147483647

2、int的最小值MIN_INT为-power(2,31) = -2147483648

3、当MIN_INT除以-1的时候,发生溢出,因为得到的值大于MAX_INT

4、有符号数的最高位为1时,表示负数,所以可以使用异或运算获得商的符号

5、abs的各种版本看这里,double abs(double),long abs(long)竟然在C++中有,其实我想自己写个求绝对值方法的,不过,手抖还是搜了一下abs的原型。

6、这才是重中之重,刚开始看到题目,我不知道怎么用位运算去实现除法,先搜到答案

然后思考其中的原理,为什么可以这么做,思考之后自己才写了代码。

我的推理如下,如有问题,请指出,谢谢。下面我有^表示指数,不要跟C++中的^弄混了。

a = b * x (x为要求的商,等号应该为约等于,其实嘛,应该是a >= b * x && a < b * (x+1))

任何一个整数是可以用二进制表示的,所以x=2^m + 2^n + ...... + 2^t,其中m > n > t,m,n,t为整数。

x还可以这么表示x = 1*2^m + 0 * 2^(m-1) + 1 * 2^(m-2) + ...... + (1或0)*2^0。

事实上x还可以这么表示:

x = (2^k + 2^(k-1) + ...... + 2^0) + (2^t + 2^(t-1) + ...... + 2^0) + ...... + (2^r + 2^(r-1) + ...... + 2^0),其中k > t > ...... > r。

所以 a = b * (2^k + 2^(k-1) + ...... + 2^0) +b *  (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0).

并且k,t,r等满足以下关系:

b *  (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0)  < b * (2^k + 2^(k-1) + ...... + 2^0) 

...... + b * (2^r + 2^(r-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0)  - b *  (2^t + 2^(t-1) + ...... + 2^0)

第一次是 a - b * (2^k + 2^(k-1) + ...... + 2^0)  = b *  (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0)

对b进行不断左移,即上式的橙色部分,而并累加位移(2^x')是x的一部分,将a不断减去不断左移后的b,即可得到等式左边的数据。

a - b * (2^k + 2^(k-1) + ...... + 2^0)  < b * (2^k + 2^(k-1) + ...... + 2^0)

即b *  (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0)

这个是必然成立的,如果不成立,则b还可以继续左移,即k的值要比当前达到的k还要大,故每次a处理后的结果会比b处理后的结果要小。

第二次是a - b * (2^k + 2^(k-1) + ...... + 2^0) - b *  (2^t + 2^(t-1) + ...... + 2^0) = ...... + b * (2^r + 2^(r-1) + ...... + 2^0)

蓝色部分为第一次的结果。

推到这里,大家应该懂了

代码

 class Solution {
public:
static const int MAX_INT = ;
static const int MIN_INT = -; int divide(int dividend, int divisor) {
if(dividend == MIN_INT && divisor == -)
{
return MAX_INT;
} long pre = abs((long)dividend);
long post = abs((long)divisor);
int index;
int rem = ; while(pre >= post)
{
long tmp = post;
for(index = ; pre >= tmp; index ++, tmp <<= )
{
pre -= tmp;
rem += ( << index);
}
} return (dividend >> ) ^ (divisor >> ) ? -rem:rem;
}
};

leetcode-【中等题】Divide Two Integers的更多相关文章

  1. 乘风破浪:LeetCode真题_029_Divide Two Integers

    乘风破浪:LeetCode真题_029_Divide Two Integers 一.前言     两个整数相除,不能使用乘法除法和取余运算.那么就只能想想移位运算和加减法运算了. 二.Divide T ...

  2. leetcode面试准备:Divide Two Integers

    leetcode面试准备:Divide Two Integers 1 题目 Divide two integers without using multiplication, division and ...

  3. leetcode第28题--Divide Two Integers

    Divide two integers without using multiplication, division and mod operator. 分析:题目意思很容易理解,就是不用乘除法和模运 ...

  4. 【一天一道LeetCode】#29. Divide Two Integers

    一天一道LeetCode系列 (一)题目 Divide two integers without using multiplication, division and mod operator. If ...

  5. [Leetcode][Python]29: Divide Two Integers

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 29: Divide Two Integershttps://oj.leetc ...

  6. LeetCode OJ:Divide Two Integers(两数相除)

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

  7. 【LeetCode】029. Divide Two Integers

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

  8. 【LeetCode】29. Divide Two Integers

    题意:不用乘除求余运算,计算除法,溢出返回INT_MAX. 首先考虑边界条件,什么条件下会产生溢出?只有一种情况,即返回值为INT_MAX+1的时候. 不用乘除求余怎么做? 一.利用减法. 耗时太长, ...

  9. leetcode 中等题(2)

    50. Pow(x, n) (中等) double myPow(double x, int n) { ; unsigned long long p; ) { p = -n; x = / x; } el ...

  10. leetcode 中等题(1)

    2. Add Two Numbers(中等) /** * Definition for singly-linked list. * struct ListNode { * int val; * Lis ...

随机推荐

  1. uva 12034

    /* 比赛的名次的所有方案数 _________________________________________________________________________________ #in ...

  2. ie7中ul不能嵌套div和li平级

    我要讲一个忧伤的故事,本以为清晰的层次结构,ul里不能嵌套div和li平级,不然会乱乱乱! 代码: <ul class="catshow">              ...

  3. 更改localhost默认打开的index.html的地址三步曲

    首先说明,我的Apache安装路径是F:\software installing\Apache2.2 解释一下,localhost默认打开的是安装路径下index.html 也就是路径F:\softw ...

  4. Google副总裁的管理经验

    一.拥挤其实是创新.拥挤喧闹的工作环境会引燃更多的创意火花.办公室应该充满能量和互动,而不是条块分割和等级分化. 二.战略和策略并举.许多人不懂得战略和策略的区别,或者他们认为自己只需要其中一样,其实 ...

  5. acm之poj题库1001方法

    题目所言是银行等不能用四舍五入等影响精度的方法来计算的情况,是为提出背景.因此需要特殊的编写.这里使用了好几种方法才找到一个合适的方法.因为C++或者C缺乏类库,又跟底层关联太大,缺乏常用的类库,在写 ...

  6. TLB初始化 Missing Handler,MIPS R3K mips_init_tlb

    #include <mips/r3kc0.h> LEAF(mips_init_tlb) mfc0 t0, C0_ENTRYHI # 保存ASID mtc0 zero, C0_ENTRYLO ...

  7. [Linux] 安装JBoss - CentOS

    CentOS安装Jboss 7 AS方法:(安装java跳过) 1.首先下载JBoss 7 AS的zip文件. 2.使用SSH,上传到CentOS中.(如何使用的是wget命令下载,可以跳过些步),这 ...

  8. 【转】Java代码规范

    [转]Java代码规范 http://blog.csdn.net/huaishu/article/details/26725539

  9. Install NukeX v7.0v6 in CentOS 7

    - download THE_FOUNDRY_NUKEX_V7.0V6_LNX64-XFORCE - unzip and untar to /home/user0/tools/foundry/nuke ...

  10. 【原】灵活运用sessionStorage或者localStorage

    有时,一个app中,后台并没有提供页面中对应的信息接口,需要前端在页面跳转时把某些信息带入下一个页面,一般想到用url后带参数的方法,但是有时需要带的参数过长,就不适合用这个方法了,所以用sessio ...