leetcode-【中等题】Divide Two Integers
题目
Divide two integers without using multiplication, division and mod operator.
If it is overflow, return MAX_INT
链接
https://leetcode.com/problems/divide-two-integers/
答案
1、int的最大值MAX_INT为power(2,31)-1 = 2147483647
2、int的最小值MIN_INT为-power(2,31) = -2147483648
3、当MIN_INT除以-1的时候,发生溢出,因为得到的值大于MAX_INT
4、有符号数的最高位为1时,表示负数,所以可以使用异或运算获得商的符号
5、abs的各种版本看这里,double abs(double),long abs(long)竟然在C++中有,其实我想自己写个求绝对值方法的,不过,手抖还是搜了一下abs的原型。
6、这才是重中之重,刚开始看到题目,我不知道怎么用位运算去实现除法,先搜到答案
然后思考其中的原理,为什么可以这么做,思考之后自己才写了代码。
我的推理如下,如有问题,请指出,谢谢。下面我有^表示指数,不要跟C++中的^弄混了。
a = b * x (x为要求的商,等号应该为约等于,其实嘛,应该是a >= b * x && a < b * (x+1))
任何一个整数是可以用二进制表示的,所以x=2^m + 2^n + ...... + 2^t,其中m > n > t,m,n,t为整数。
x还可以这么表示x = 1*2^m + 0 * 2^(m-1) + 1 * 2^(m-2) + ...... + (1或0)*2^0。
事实上x还可以这么表示:
x = (2^k + 2^(k-1) + ...... + 2^0) + (2^t + 2^(t-1) + ...... + 2^0) + ...... + (2^r + 2^(r-1) + ...... + 2^0),其中k > t > ...... > r。
所以 a = b * (2^k + 2^(k-1) + ...... + 2^0) +b * (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0).
并且k,t,r等满足以下关系:
b * (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0)
...... + b * (2^r + 2^(r-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0) - b * (2^t + 2^(t-1) + ...... + 2^0)
第一次是 a - b * (2^k + 2^(k-1) + ...... + 2^0) = b * (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0)
对b进行不断左移,即上式的橙色部分,而并累加位移(2^x')是x的一部分,将a不断减去不断左移后的b,即可得到等式左边的数据。
a - b * (2^k + 2^(k-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0)
即b * (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0)
这个是必然成立的,如果不成立,则b还可以继续左移,即k的值要比当前达到的k还要大,故每次a处理后的结果会比b处理后的结果要小。
第二次是a - b * (2^k + 2^(k-1) + ...... + 2^0) - b * (2^t + 2^(t-1) + ...... + 2^0) = ...... + b * (2^r + 2^(r-1) + ...... + 2^0)
蓝色部分为第一次的结果。
推到这里,大家应该懂了
代码
class Solution {
public:
static const int MAX_INT = ;
static const int MIN_INT = -;
int divide(int dividend, int divisor) {
if(dividend == MIN_INT && divisor == -)
{
return MAX_INT;
}
long pre = abs((long)dividend);
long post = abs((long)divisor);
int index;
int rem = ;
while(pre >= post)
{
long tmp = post;
for(index = ; pre >= tmp; index ++, tmp <<= )
{
pre -= tmp;
rem += ( << index);
}
}
return (dividend >> ) ^ (divisor >> ) ? -rem:rem;
}
};
leetcode-【中等题】Divide Two Integers的更多相关文章
- 乘风破浪:LeetCode真题_029_Divide Two Integers
乘风破浪:LeetCode真题_029_Divide Two Integers 一.前言 两个整数相除,不能使用乘法除法和取余运算.那么就只能想想移位运算和加减法运算了. 二.Divide T ...
- leetcode面试准备:Divide Two Integers
leetcode面试准备:Divide Two Integers 1 题目 Divide two integers without using multiplication, division and ...
- leetcode第28题--Divide Two Integers
Divide two integers without using multiplication, division and mod operator. 分析:题目意思很容易理解,就是不用乘除法和模运 ...
- 【一天一道LeetCode】#29. Divide Two Integers
一天一道LeetCode系列 (一)题目 Divide two integers without using multiplication, division and mod operator. If ...
- [Leetcode][Python]29: Divide Two Integers
# -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 29: Divide Two Integershttps://oj.leetc ...
- LeetCode OJ:Divide Two Integers(两数相除)
Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...
- 【LeetCode】029. Divide Two Integers
Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...
- 【LeetCode】29. Divide Two Integers
题意:不用乘除求余运算,计算除法,溢出返回INT_MAX. 首先考虑边界条件,什么条件下会产生溢出?只有一种情况,即返回值为INT_MAX+1的时候. 不用乘除求余怎么做? 一.利用减法. 耗时太长, ...
- leetcode 中等题(2)
50. Pow(x, n) (中等) double myPow(double x, int n) { ; unsigned long long p; ) { p = -n; x = / x; } el ...
- leetcode 中等题(1)
2. Add Two Numbers(中等) /** * Definition for singly-linked list. * struct ListNode { * int val; * Lis ...
随机推荐
- uva 12034
/* 比赛的名次的所有方案数 _________________________________________________________________________________ #in ...
- ie7中ul不能嵌套div和li平级
我要讲一个忧伤的故事,本以为清晰的层次结构,ul里不能嵌套div和li平级,不然会乱乱乱! 代码: <ul class="catshow"> ...
- 更改localhost默认打开的index.html的地址三步曲
首先说明,我的Apache安装路径是F:\software installing\Apache2.2 解释一下,localhost默认打开的是安装路径下index.html 也就是路径F:\softw ...
- Google副总裁的管理经验
一.拥挤其实是创新.拥挤喧闹的工作环境会引燃更多的创意火花.办公室应该充满能量和互动,而不是条块分割和等级分化. 二.战略和策略并举.许多人不懂得战略和策略的区别,或者他们认为自己只需要其中一样,其实 ...
- acm之poj题库1001方法
题目所言是银行等不能用四舍五入等影响精度的方法来计算的情况,是为提出背景.因此需要特殊的编写.这里使用了好几种方法才找到一个合适的方法.因为C++或者C缺乏类库,又跟底层关联太大,缺乏常用的类库,在写 ...
- TLB初始化 Missing Handler,MIPS R3K mips_init_tlb
#include <mips/r3kc0.h> LEAF(mips_init_tlb) mfc0 t0, C0_ENTRYHI # 保存ASID mtc0 zero, C0_ENTRYLO ...
- [Linux] 安装JBoss - CentOS
CentOS安装Jboss 7 AS方法:(安装java跳过) 1.首先下载JBoss 7 AS的zip文件. 2.使用SSH,上传到CentOS中.(如何使用的是wget命令下载,可以跳过些步),这 ...
- 【转】Java代码规范
[转]Java代码规范 http://blog.csdn.net/huaishu/article/details/26725539
- Install NukeX v7.0v6 in CentOS 7
- download THE_FOUNDRY_NUKEX_V7.0V6_LNX64-XFORCE - unzip and untar to /home/user0/tools/foundry/nuke ...
- 【原】灵活运用sessionStorage或者localStorage
有时,一个app中,后台并没有提供页面中对应的信息接口,需要前端在页面跳转时把某些信息带入下一个页面,一般想到用url后带参数的方法,但是有时需要带的参数过长,就不适合用这个方法了,所以用sessio ...