[BZOJ2339][HNOI2011]卡农

试题描述

输入

见“试题描述

输出

见“试题描述

输入示例

见“试题描述

输出示例

见“试题描述

数据规模及约定

见“试题描述

题解

先考虑 m 个 01 串排顺序的情况。可以发现如果定下前 m - 1 个 01 串,那么第 m 个串就可以由前面所有 01 串按位异或得出,所以方案数为 A(2n - 1, m - 1)(即除全 0 串外的所有情况选择 m - 1 个并排列顺序的方案数),现在我们需要减去不合法的情况。我们令 f(m) 表示前 m 个串考虑顺序合法的方案数。

不合法#1:所有 m - 1 个 01 串的异或和为全 0 串,即最后一个填的是全 0 串,那么要减去 f(m - 1)。

不合法#2:最后一个填的串与前 m - 1 个串有重复,那么如果去掉这两个相同的串,剩下的串能组成合法的情况(即 f(m - 2)),然后这个串可能与前 m - 1 个串中任意一个串重复,所以要乘上 m - 1,最后这个重复的串本身有 2n - 1 - (m - 2) 种情况。所以最终需要减去 f(m - 2) * (m - 1) * [2n - 1 - (m - 2)]。

最后再把答案除以 m! 就好了,求一下逆元。

注意不可以用组合数的方法避免排顺序,因为如果这样做了,在“不合法#2”这一步中我们就不能保证对于那 m - 1 个重复的位置每一个都是完整的 f(m - 2) 中情况,可以想象一下如果用组合数,那么方案中的 01 串就按照一固定顺序排好了,那么对于一个特定的串它的位置就没有任意性了。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 1000010
#define MOD 100000007
#define LL long long
int f[maxn], A[maxn]; void gcd(LL a, LL b, LL& x, LL& y) {
if(!b){ x = 1; y = 0; return ; }
gcd(b, a % b, y, x); y -= a / b * x;
return ;
}
LL Inv(LL a) {
LL x, y;
gcd(a, MOD, x, y);
x = (x % MOD + MOD) % MOD;
return (x % MOD + MOD) % MOD;
} int main() {
int n = read(), m = read(); int sum2 = 1;
for(int i = 1; i <= n; i++) {
sum2 <<= 1;
if(sum2 >= MOD) sum2 -= MOD;
}
A[0] = 1;
for(int i = 1; i <= m; i++) A[i] = (LL)A[i-1] * ((sum2 - i + MOD) % MOD) % MOD;
f[1] = f[2] = 0; int tmp = 2;
for(int i = 3; i <= m; i++) {
f[i] = A[i-1] - ((LL)f[i-2] * (i - 1) % MOD) * ((sum2 - i + 1 + MOD) % MOD) % MOD;
if(f[i] < 0) f[i] += MOD;
f[i] -= f[i-1];
if(f[i] < 0) f[i] += MOD;
tmp = (LL)tmp * i % MOD;
}
printf("%d\n", (LL)f[m] * Inv(tmp) % MOD); return 0;
}

BTW,这题不能用 fread 优化读入。。。

[BZOJ2339][HNOI2011]卡农的更多相关文章

  1. bzoj2339[HNOI2011]卡农 dp+容斥

    2339: [HNOI2011]卡农 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 842  Solved: 510[Submit][Status][ ...

  2. BZOJ2339[HNOI2011]卡农——递推+组合数

    题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...

  3. BZOJ2339 HNOI2011卡农(动态规划+组合数学)

    考虑有序选择各子集,最后除以m!即可.设f[i]为选i个子集的合法方案数. 对f[i]考虑容斥,先只满足所有元素出现次数为偶数.确定前i-1个子集后第i个子集是确定的,那么方案数为A(2n-1,i-1 ...

  4. 【BZOJ2339】[HNOI2011]卡农 组合数+容斥

    [BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...

  5. 【BZOJ2339】卡农(递推,容斥)

    [BZOJ2339]卡农(递推,容斥) 题面 BZOJ 题解 先简化一下题意: 在\([1,2^n-1]\)中选择不重复的\(m\)个数,使得他们异或和为\(0\)的方案数. 我们设\(f[i]\)表 ...

  6. P3214 [HNOI2011]卡农

    题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...

  7. [HNOI2011]卡农

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

  8. [HNOI2011]卡农 题解

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

  9. [HNOI2011]卡农 (数论计数,DP)

    题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...

随机推荐

  1. Windows设置VMware开机自动启动,虚拟机也启动

    很多用windows系统电脑开发的童鞋,会在自己电脑上装一个虚拟机,然后在装一个linux系统当作服务器来使用.但每次电脑开机都要去重启一下虚拟机电源,实在是不划算.下面博主教大家在windows系统 ...

  2. shell-正则表达式

    证则表达式:在计算机科学中,是指一个用来描述或者匹配一系列符合某个句法规则的字符串的单个字符串.在很多文本编辑器或其他工具里,正则表达式通常被用来检索和/或替换那些符合某个模式的文本内容.许多程序设计 ...

  3. sql 时间格式化

    sql server2000中使用convert来取得datetime数据类型样式(全) 日期数据格式的处理,两个示例: CONVERT(varchar(16), 时间一, 20) 结果:2007-0 ...

  4. C# 修改iframe url

    一.修改本级的iframe url 首先在js中编写函数: <script type="text/javascript"> function reloadfrm2() ...

  5. 开源的许可证GPL、LGPL、BSD、Apache 2.0的通俗解释

    软件开发者要开源软件,不单单是开放源代码就可以了,选择一种许可证很重要,一个许可证之于软件就相当于价值观之于普通人,代表了这个软件的基本品性.一个错误的许可证选择可能会直接导致整个项目的失败. 各种开 ...

  6. 从A页面跳转到B页面,从B页面按浏览器自带按钮返回到A页面并且刷新页面--手机操作浏览器自带返回并自带刷新

    <html> <head> <meta http-equiv="Content-Type" content="text/html; char ...

  7. CODE[VS]-寻找子串位置-字符串处理-天梯青铜

    题目描述 Description 给出字符串a和字符串b,保证b是a的一个子串,请你输出b在a中第一次出现的位置. 输入描述 Input Description 仅一行包含两个字符串a和b 输出描述 ...

  8. redis配置文件redis.conf的参数说明

    打开redis.conf文件: # By default Redis does not run as a daemon. Use 'yes' if you need it. # Note that R ...

  9. 设计模式 -- 中介者设计模式 (Mediator Pattern)

    中介者模式的定义:将多对多关系分散为一对多的关系,将网状结构变成星状结构,降低复杂度,提高扩展性. 角色: Mediator :抽象中介者角色,以抽象类的方式实现,生命具体对象,以及抽象方法: Con ...

  10. 字串变换 (2002 年NOIP全国联赛提高组)

    一道看似非常水的题 大意 :将一个字串 经过几种变换规则变为给定的另一个子串 ,求最小操作数. code[vs] 传送门 洛谷传送门 已知有两个字串 A, B 及一组字串变换的规则(至多6个规则): ...