Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu

[Submit]   [Go Back]   [Status]

Description

 

A very big corporation is developing its corporative network. In the beginning each of the N enterprises of the corporation, numerated from 1 to N, organized its own computing and telecommunication center. Soon, for amelioration of the services, the corporation started to collect some enterprises in clusters, each of them served by a single computing and telecommunication center as follow. The corporation chose one of the existing centers I (serving the cluster A) and one of the enterprises J in some cluster B (not necessarily the center) and link them with telecommunication line. The length of the line between the enterprises I and J is |I – J|(mod 1000). In such a way the two old clusters are joined in a new cluster, served by the center of the old cluster B. Unfortunately after each join the sum of the lengths of the lines linking an enterprise to its serving center could be changed and the end users would like to know what is the new length. Write a program to keep trace of the changes in the organization of the network that is able in each moment to answer the questions of the users.

Input

Your program has to be ready to solve more than one test case. The first line of the input file will contains only the number T of the test cases. Each test will start with the number N of enterprises (5≤N≤20000). Then some number of lines (no more than 200000) will follow with one of the commands:

E I – asking the length of the path from the enterprise I to its serving center in the moment;  
I I J – informing that the serving center I is linked to the enterprise J.

The test case finishes with a line containing the word O. The I commands are less than N.

Output

The output should contain as many lines as the number of E commands in all test cases with a single number each – the asked sum of length of lines connecting the corresponding enterprise with its serving center.

Sample Input

1
4
E 3
I 3 1
E 3
I 1 2
E 3
I 2 4
E 3
O

Sample Output

0
2
3
5

题目大意:有N个结点,初始时每个结点的父亲都不存在,你的任务时执行一次I操作和E操作,格式如下:

I u  v  :把结点u的父节点设为v,距离为|u-v|除以1000的余数,输入保证执行指令前u 没有父节点

E u   :询问u 到根节点的距离

思路:

带距离的并查集,在每次合并父亲节点的时候更新一个距离就可以了

可参考刘汝佳入门经典训练指南

#include <iostream>
using namespace std;
const int maxn = 20000 + 10;
int d[maxn], fa[maxn];
int find(int x)
{
if(x == fa[x]) return x;
else
{
int root = find(fa[x]);
d[x] += d[fa[x]];
return fa[x] = root;
}
}
int main()
{
int T, N, i, I, J;
cin>>T;
while(T--)
{
cin>>N;
for(i = 0; i <= N; i++)
{
fa[i] = i;
d[i] = 0; //自己到自己(根)的距离为0
}
char c;
bool ok = 1;
while(ok && cin>>c)
{
switch(c)
{
case 'O':
{
ok = 0;
break;
}
case 'I':
{
//int x,y;
cin>>I>>J;
/* x=find(I);
y=find(J);
if(x==y) continue;
fa[x]=y;
*/
fa[I] = J;
int ans = I > J ? (I-J) : (J-I);
d[I] =ans % 1000;
break;
}
case 'E':
{
cin>>I;
find(I);
cout<<d[I]<<endl;
break;
}
}
}
}
return 0;
}

不能按代码中注释的 那样

x=find(I);

y=find(J);

if(x==y) continue;

fa[x]=y;

代替 fa[I] = J;

一换掉 就wa

:  假设用dis表示点到根的距离

因为 为了求dis   所以谁的父亲就是谁的父亲 不能压缩 , 但是上面的find代码是进行压缩的     不过它是在递归求dis后 才压缩的    所以说 是可以压缩的

即 必须先递归 后压缩     这样就能保证求出的dis 确实是按照父亲节点算出来的

上面的那个错误  是由于先调用find函数压缩 ,这时候 点  I 的 dis还没有算出来,后面再求它的dis的时候 其就不再是按照真正的父亲节点找出的 而是按照祖先节点算的(因为压缩过了)

对于之后输入E   再次调用fand函数的时候  虽然已经压缩过了   但是所有点的dis已经求出来了  对于再加入的边 I  J   我们依旧能够通过接到已经求出的正确dis 求出来I 的dis

注意dis表示 点到根的距离

我的叙述能力比较差          想了好久才想出这么点东西  如果不对  请大家指正           希望有人能明白我讲述的意思吧

http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=33982

LA 3027 Corporative Network 并查集记录点到根的距离的更多相关文章

  1. [LA] 3027 - Corporative Network [并查集]

    A very big corporation is developing its corporative network. In the beginning each of the N enterpr ...

  2. UVALive - 3027 Corporative Network (并查集)

    这题比较简单,注意路径压缩即可. AC代码 //#define LOCAL #include <stdio.h> #include <algorithm> using name ...

  3. 【LA 3027 Corporative Network】

    ·一些很可爱的询问和修改,放松地去用并查集解决. ·英文题,述大意: 输入n(5<=n<=20000)表示树有n个节点,并且会EOF结束地读入不超过 20000个操作,一共有两种:    ...

  4. 并查集(路径更新) LA 3027 Corporative Network

    题目传送门 题意:训练指南P192 分析:主要就是一个在路径压缩的过程中,更新点i到根的距离 #include <bits/stdc++.h> using namespace std; c ...

  5. LA 3027 Corporative Network

    这题感觉和 POJ 1988 Cube Stacking 很像,在路径压缩的同时递归出来的时候跟新distant数组 我发现我一直WA的原因是,命令结束是以字母o结束的,而不是数字0!! //#def ...

  6. 树上战争(HDU 2545 并查集求解点到根节点长度)

    树上战争 Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  7. 3027 - Corporative Network

    3027 - Corporative Network 思路:并查集: cost记录当前点到根节点的距离,每次合并时路径压缩将cost更新. 1 #include<stdio.h> 2 #i ...

  8. 【暑假】[实用数据结构]UVAlive 3027 Corporative Network

    UVAlive 3027 Corporative Network 题目:   Corporative Network Time Limit: 3000MS   Memory Limit: 30000K ...

  9. 3027 - Corporative Network(并差集)

    3027 - Corporative Network A very big corporation is developing its corporative network. In the begi ...

随机推荐

  1. css3 animation 参数详解

    animation: name 2s ease 0s 1 both有人知道这后面的参数都代表什么意思吗 name 就是你创建动画的名称 2S表示的时长 ease表示运动效果 0S表示延迟时间 1表示的 ...

  2. Android中吐司当前电池电量

    /** * * @author chrp * *土司当当电池电量 */ public class MainActivity extends Activity { class BtteryReceive ...

  3. Windows 7中怎样找到真正的Administrator账户

    出于安全因素方面的考虑,默认情况下 Windows 7 的系统管理员 Administrator 账户处于禁用状态.需要使用时,开启它其实也很简单,并不需要复杂的操作. 方法一:从系统管理中启用Adm ...

  4. EL表达式(1)

    JSP页面中支持使用EL表达式,EL全名为Expression Language.EL表达式的主要作用有: ① 获取数据: ② 执行运算: ③ 使用EL表达式的11大隐式对象: ④ 调用Java方法. ...

  5. MS Server中varchar与nvarchar的区别

    很多时候我们在创建数据库时在给字段设置数据类型时会选择varchar或是nvarchar.当然还可以选择别的数据类型,本文只对varchar和nvarchar两种类型做说明.如下测试表Test的表结构 ...

  6. Linux IP代理筛选系统(shell+proxy)

    代理的用途 其实,除了抓取国外网页需要用到IP代理外,还有很多场景会用到代理: 通过代理访问一些国外网站,绕过被某国防火墙过滤掉的网站 使用教育网的代理服务器,可以访问到大学或科研院所的内部网站资源 ...

  7. C#检查foreach为null判断

    1.foreach遍历列表或数组时,如果list或数组为null,就会报错,如下图: 2.不知道微软封装foreach的为什么不先检查要遍历的对象是否为null,这样就导致,我们在写代码时,遍历列表时 ...

  8. HDU 4296 Buildings (YY)

    题意: 给定N个物体,每个物体有两个参数w,s.   w代表它自身的重量: s代表它的强度.现在要把这些物体叠在一起,会产生一个PDV值. PDV解释:(Σwj)-si, where (Σwj) st ...

  9. c#soap调用WebService

    辅助类 /// <summary> /// 上传数据参数 /// </summary> public class UploadEventArgs : EventArgs { i ...

  10. find . -iname "*.jpg"|xargs -i mv {} .;for i in `ls`; do mv -f $i `echo $i | sed 's/JPG/jpg/'`; done

    find . -iname "*.jpg"|xargs -i mv {} .;for i in `ls`; do mv -f $i `echo $i | sed 's/JPG/jp ...