51nod1119(除法取模)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119
题意:中文题诶~
思路:这题数据比较大直接暴力肯定是不行咯,通过一部分打表我们不难发现这个矩阵就是由两个杨辉三角构成的,那么求f(n, m)就是求组合数c(m+n-2, m-1)%mod,其中n>=m;
我们令m+n-2=n, m-1=m, 即我们要求c(n, m)=n!/((n-m)!*m!)%mod,为了书写方便,我们再令:a=n!/(n-m)!, b=m!;
那么我们现在要求的就是:(a/b)%mod,除法取模并不能直接计算,我们需要将之转化为乘法取摸运算;
接下来我们可以有两种解法:
解法1:(a/b)%mod=(a*b')%mod,其中b'为b%mod的乘法逆元,求乘法逆元我们直接用exgcd就好了;不过这里还有一个问题需要注意:
a, b两个数本身就已经超过long long了,所以我们不能先直接计算出a, b的值再求逆元;那么我们是否可以在计算a, b的过程中给其取摸呢?
即:((a%mod)/(b%mod))%mod=?((a%mod)*b')%mod, 答案是可以的, 因为:b=1(%mod), 那么有 b%mod=1(%mod), 显然,先给b取摸再求逆是可行的。 所以我们最终要求的就是:((a%mod)*b')%mod;
代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std; const ll mod=1e9+; void exgcd(ll a, ll b, ll&x, ll&y){
if(!b){
y=, x=;
return;
}
exgcd(b, a%b, y, x);
y-=a/b*x;
} int main(void){
ll n, m, a=, b=, x, y;
cin >> n >> m;
if(n<m){
swap(n, m);
}
n=n+m-, m-=;
for(ll i=n,j=; j<m; j++,i--){
a=i*a%mod;
}
for(ll i=; i<=m; i++){
b=b*i%mod;
}
exgcd(b, mod, x, y);
x=(x%mod+mod)%mod;
cout << a*x%mod << endl;
return ;
}
解法2:
我们先引入费马小定理:对于互质的两个数b, mod, 有:b^(mod-1)=1(%mod)-----1式;
本题要求 x=(a/b)%mod, 即: a/b=x(%mod)-----2式;
联立1,2式,有:a/b*b^(mod-1)=x(%mod), 即:a*b^(mod-2)=x(%mod), 所以:x=a*b^(mod-2) % mod, 我们可以用快速幂求解;
关于上式证明:
1式等价于:b^(mod-1)%mod=1; 即: b^(mod-1)=k*mod+1;
2式等价于:(a/b)%mod=x; 即: a/b=k'*mod+x;
所以有:a/b*b^(mod-1)=k*k'*mod^2+k'*mod+x*k*mod+x;
所以:a/b*b^(mod-1)%mod=x;
所以:a/b*b^(mod-1)=x(%mod), 即原式得证;
代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std; const ll mod=1e9+; ll get_pow(ll x, ll n){
ll ans=;
while(n){
if(n&){
ans=ans*x%mod;
}
x=x*x%mod;
n>>=;
}
return (ans+mod)%mod;
} int main(void){
ll n, m, a=, b=, x, y;
cin >> n >> m;
if(n<m){
swap(n, m);
}
n=n+m-, m-=;
for(ll i=n,j=; j<m; j++,i--){
a=i*a%mod;
}
for(ll i=; i<=m; i++){
b=b*i%mod;
}
cout << a*get_pow(b, mod-)%mod << endl;
return ;
}
51nod1119(除法取模)的更多相关文章
- 51nod1119(除法取模/费马小定理求组合数)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 题意:中文题诶- 思路:这题数据比较大直接暴力肯定是不 ...
- 除法取模练习(51nod 1119 & 1013 )
题目:1119 机器人走方格 V2 思路:求C(m+n-2,n-1) % 10^9 +7 (2<=m,n<= 1000000) 在求组合数时,一般都通过双重for循环c[i][ ...
- HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)
传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...
- Re.多项式除法/取模
前言 emmm又是暂无 前置 多项式求逆 多项式除法/取模目的 还是跟之前一样顾名思义] 给定一个多项式F(x),请求出多项式Q(x)和R(x),满足F(x)=Q(x)∗G(x)+R(x),R项数小于 ...
- hdu 3037 费马小定理+逆元除法取模+Lucas定理
组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...
- 51nod 1013 3的幂的和 - 快速幂&除法取模
题目地址:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013 Konwledge Point: 快速幂:https:/ ...
- HDU 4633 Who's Aunt Zhang ★(Polya定理 + 除法取模)
题意 用K个颜色给魔方染色,魔方只能整体旋转并且旋转重合的方案算一种,求一共有多少不同的染色方案. 思路 经典的Polya应用,记住正六面体的置换群就可以了,魔方就是每个大面变成9个小面了而已: 本题 ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- HDU4675【GCD of scequence】【组合数学、费马小定理、取模】
看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...
随机推荐
- Android开机动画启动流程
android开机动画启动流程 从android的Surface Flinger服务启动分析知道,开机动画是在SurfaceFlinger实例通过调用startBootAnim()启动的. 下面我 ...
- HttpServletResponse对象
Web服务器收到客户端的http请求,会针对每一次请求,分别创建一个用于代表请求的request对象.和代表响应的response对象. request和response对象即然代表请求和响应,那我们 ...
- [转]new一个Object对象占用多少内存?
我们分解下ArrayList arr = new ArrayList();等同于ArrayList arr = null;//初始化arr = new ArrayList();//实例化这两个过程.初 ...
- elasticsearch 索引优化
ES索引优化篇主要从两个方面解决问题,一是索引数据过程:二是检索过程. 索引数据过程我在上面几篇文章中有提到怎么创建索引和导入数据,但是大家可能会遇到索引数据比较慢的过程.其实明白索引的原理就可以有 ...
- unit正交相机Size的计算公式
如:相机的大小为800*480,要使相机适应800*480像素的图,则 Size = 相机高/2/像素单位 = 480/2/100 = 2.4
- Zend Optimizer not installed可能原因及解决方法
Zend Optimizer not installed可能原因及解决方法 Optimizer, Zend 在配置php服务器的时候,所有的东西都安装好了,就是浏览一个要求zend的程序的时候,总是提 ...
- 【转】Apache 关于 mod_rewrite 遇到 %2F或%5C (正反斜杠)等特殊符号导致URL重写失效出现404的问题
.htaccess 文件 <IfModule mod_rewrite.c> RewriteEngine on RewriteCond %{REQUEST_FILENAME} !-d Rew ...
- Servlet程序开发-Helloworld
D:\Workspace\WEB-INF\classes下新建HelloServlet.java文件: package org.lxh.servletdemo ; import java.io.* ; ...
- 实例:SSH结合Easyui实现Datagrid的批量删除功能
在我先前的基础上面添加批量删除功能.实现的效果如下 删除成功 通常情况下删除不应该真正删除,而是应该有一个标志flag,但flag=true表示状态可见,但flag=false表示状态不可见,为删除状 ...
- 母亲的牛奶(milk)
母亲的牛奶(milk) 题目描述 农民约翰有三个容量分别是A.B.C升的桶,A.B.C分别是三个从1到20的整数,最初,A和B桶都是空的,而C桶是装满牛奶的.有时,约翰把牛奶从一个桶倒到另一个桶中,直 ...