NGUI研究之在Unity中使用贝塞尔曲线
鼎鼎大名的贝塞尔曲线相信大家都耳熟能详。这两天由于工作的原因须要将贝塞尔曲线加在project中。那么我迅速的研究了一下成果就分享给大家了哦。贝塞尔曲线的原理是由两个点构成的随意角度的曲线,这两个点一个是起点,一个是终点。在这条曲线之上还会有两个能够随意移动的点来控制贝塞尔曲线的角度。例如以下图所看到的。点1 和点4 就是起点和终点,点2 和点3 就是控制曲线角度的两个动态点。
上一章分享了开发项目的一些使用心得比較细节对新手非常实用能够看下。
" src="http://www.cgzhw.com/wp-content/uploads/2014/07/158.png" style="">
例如以下图所看到的。使用拖动条来让曲线发生旋转,大家会看的更加清晰。
眼下我们看到的被塞尔曲线是在平面中完毕的。事实上贝塞尔曲线是全然支持3D中完毕。这里是为了让大家看的更加清晰我将忽略Z曲线的Z轴。
UnityAPI文档中有贝塞尔曲线的方法,但是仅仅支持编辑器中使用,也就是说无法在程序中使用。那么本篇文章我们利用贝塞尔曲线的数学原理以及LineRenderer组件来完毕在Unity中使用贝塞尔曲线。
创建一个U3D的project,创建一个新游戏对象,绑定LineRenderer组件。
Bezier.cs 这里是贝塞尔曲线的公式C#版本号
[System.Serializable]
public class Bezier : System.Object
{
public Vector3 p0;
public Vector3 p1;
public Vector3 p2;
public Vector3 p3;
public float ti = 0f;
private Vector3 b0 = Vector3.zero;
private Vector3 b1 = Vector3.zero;
private Vector3 b2 = Vector3.zero;
private Vector3 b3 = Vector3.zero;
private float Ax;
private float Ay;
private float Az;
private float Bx;
private float By;
private float Bz;
private float Cx;
private float Cy;
private float Cz;
// Init function v0 = 1st point, v1 = handle of the 1st point , v2 = handle of the 2nd point, v3 = 2nd point
// handle1 = v0 + v1
// handle2 = v3 + v2
public Bezier( Vector3 v0, Vector3 v1, Vector3 v2, Vector3 v3 )
{
this.p0 = v0;
this.p1 = v1;
this.p2 = v2;
this.p3 = v3;
}
// 0.0 >= t <= 1.0
public Vector3 GetPointAtTime( float t )
{
this.CheckConstant();
float t2 = t * t;
float t3 = t * t * t;
float x = this.Ax * t3 + this.Bx * t2 + this.Cx * t + p0.x;
float y = this.Ay * t3 + this.By * t2 + this.Cy * t + p0.y;
float z = this.Az * t3 + this.Bz * t2 + this.Cz * t + p0.z;
return new Vector3( x, y, z );
}
private void SetConstant()
{
this.Cx = 3f * ( ( this.p0.x + this.p1.x ) - this.p0.x );
this.Bx = 3f * ( ( this.p3.x + this.p2.x ) - ( this.p0.x + this.p1.x ) ) - this.Cx;
this.Ax = this.p3.x - this.p0.x - this.Cx - this.Bx;
this.Cy = 3f * ( ( this.p0.y + this.p1.y ) - this.p0.y );
this.By = 3f * ( ( this.p3.y + this.p2.y ) - ( this.p0.y + this.p1.y ) ) - this.Cy;
this.Ay = this.p3.y - this.p0.y - this.Cy - this.By;
this.Cz = 3f * ( ( this.p0.z + this.p1.z ) - this.p0.z );
this.Bz = 3f * ( ( this.p3.z + this.p2.z ) - ( this.p0.z + this.p1.z ) ) - this.Cz;
this.Az = this.p3.z - this.p0.z - this.Cz - this.Bz;
}
// Check if p0, p1, p2 or p3 have changed
private void CheckConstant()
{
if( this.p0 != this.b0 || this.p1 != this.b1 || this.p2 != this.b2 || this.p3 != this.b3 )
{
this.SetConstant();
this.b0 = this.p0;
this.b1 = this.p1;
this.b2 = this.p2;
this.b3 = this.p3;
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
using
UnityEngine; [System.Serializable]
public
class Bezier : System.Object {
public
Vector3 p0; public
Vector3 p1; public
Vector3 p2; public
Vector3 p3; public
float ti = 0f; private
Vector3 b0 = Vector3.zero; private
Vector3 b1 = Vector3.zero; private
Vector3 b2 = Vector3.zero; private
Vector3 b3 = Vector3.zero; private
float Ax; private
float Ay; private
float Az; private
float Bx; private
float By; private
float Bz; private
float Cx; private
float Cy; private
float Cz; // Init function v0 = 1st point, v1 = handle of the 1st point , v2 = handle of the 2nd point, v3 = 2nd point
// handle1 = v0 + v1
// handle2 = v3 + v2
public
Bezier( Vector3 v0, Vector3 v1, Vector3 v2, Vector3 v3 ) {
this.p0
= v0; this.p1
= v1; this.p2
= v2; this.p3
= v3; }
// 0.0 >= t <= 1.0
public
Vector3 GetPointAtTime( float t ) {
this.CheckConstant();
float
t2 = t * t; float
t3 = t * t * t; float
x = this.Ax * t3 + this.Bx * t2 + this.Cx * t + p0.x; float
y = this.Ay * t3 + this.By * t2 + this.Cy * t + p0.y; float
z = this.Az * t3 + this.Bz * t2 + this.Cz * t + p0.z; return
new Vector3( x, y, z ); }
private
void SetConstant() {
this.Cx
= 3f * ( ( this.p0.x + this.p1.x ) - this.p0.x ); this.Bx
= 3f * ( ( this.p3.x + this.p2.x ) - ( this.p0.x + this.p1.x ) ) - this.Cx; this.Ax
= this.p3.x - this.p0.x - this.Cx - this.Bx; this.Cy
= 3f * ( ( this.p0.y + this.p1.y ) - this.p0.y ); this.By
= 3f * ( ( this.p3.y + this.p2.y ) - ( this.p0.y + this.p1.y ) ) - this.Cy; this.Ay
= this.p3.y - this.p0.y - this.Cy - this.By; this.Cz
= 3f * ( ( this.p0.z + this.p1.z ) - this.p0.z ); this.Bz
= 3f * ( ( this.p3.z + this.p2.z ) - ( this.p0.z + this.p1.z ) ) - this.Cz; this.Az
= this.p3.z - this.p0.z - this.Cz - this.Bz; }
// Check if p0, p1, p2 or p3 have changed
private
void CheckConstant() {
if(
this.p0 != this.b0 || this.p1 != this.b1 || this.p2 != this.b2 || this.p3 != this.b3 ) {
this.SetConstant();
this.b0
= this.p0; this.b1
= this.p1; this.b2
= this.p2; this.b3
= this.p3; }
}
}
|
MyBezier.cs 把它直接挂在摄像机上 ,控制拖动条来控制贝塞尔曲线、
public class MyBezier : MonoBehaviour
{
//贝塞尔曲线算法类
public Bezier myBezier;
//曲线的对象
public GameObject Yellowline;
//曲线对象的曲线组件
private LineRenderer YellowlineRenderer;
//拖动条用来控制贝塞尔曲线的两个点
public float hSliderValue0;
public float hSliderValue1;
void Start()
{
//得到曲线组件
YellowlineRenderer = Yellowline.GetComponent<LineRenderer>();
//为了让曲线更加美观。设置曲线由100个点来组成
YellowlineRenderer.SetVertexCount(100);
}
void OnGUI()
{
//拖动条得出 -5.0 - 5.0之间的一个数值
hSliderValue0 = GUI.HorizontalSlider(new Rect(25, 25, 100, 30), hSliderValue0, -5.0F, 5.0F);
hSliderValue1 = GUI.HorizontalSlider(new Rect(25, 70, 100, 30), hSliderValue1, -5.0F, 5.0F);
}
void Update()
{
//在这里来计算贝塞尔曲线
//四个參数 表示当前贝塞尔曲线上的4个点 第一个点和第四个点
//我们是不须要移动的,中间的两个点是由拖动条来控制的。
myBezier = new Bezier( new Vector3( -5f, 0f, 0f ), new Vector3( hSliderValue1, hSliderValue0 , 0f ), new Vector3( hSliderValue1, hSliderValue0, 0f ), new Vector3( 5f, 0f, 0f ) );
//循环100遍来绘制贝塞尔曲线每一个线段
for(int i =1; i <= 100; i++)
{
//參数的取值范围 0 - 1 返回曲线没一点的位置
//为了精确这里使用i * 0.01 得到当前点的坐标
Vector3 vec = myBezier.GetPointAtTime( (float)(i *0.01) );
//把每条线段绘制出来 完毕白塞尔曲线的绘制
YellowlineRenderer.SetPosition(i -1,vec);
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
using
UnityEngine; public
class MyBezier : MonoBehaviour {
//贝塞尔曲线算法类
public
Bezier myBezier;
//曲线的对象
public
GameObject Yellowline; //曲线对象的曲线组件
private
LineRenderer YellowlineRenderer;
//拖动条用来控制贝塞尔曲线的两个点
public
float hSliderValue0;
public
float hSliderValue1;
void
Start() {
//得到曲线组件
YellowlineRenderer
= Yellowline.GetComponent<LineRenderer>();
//为了让曲线更加美观,设置曲线由100个点来组成
YellowlineRenderer.SetVertexCount(100);
}
void
OnGUI() {
//拖动条得出 -5.0 - 5.0之间的一个数值
hSliderValue0
= GUI.HorizontalSlider(new Rect(25, 25, 100, 30), hSliderValue0, -5.0F, 5.0F);
hSliderValue1
= GUI.HorizontalSlider(new Rect(25, 70, 100, 30), hSliderValue1, -5.0F, 5.0F); }
void
Update()
{
//在这里来计算贝塞尔曲线
//四个參数 表示当前贝塞尔曲线上的4个点 第一个点和第四个点
//我们是不须要移动的,中间的两个点是由拖动条来控制的。
myBezier
= new Bezier( new Vector3( -5f, 0f, 0f ), new Vector3( hSliderValue1, hSliderValue0 , 0f ), new Vector3( hSliderValue1, hSliderValue0, 0f ), new Vector3( 5f, 0f, 0f ) );
//循环100遍来绘制贝塞尔曲线每一个线段
for(int
i =1; i <= 100; i++)
{
//參数的取值范围 0 - 1 返回曲线没一点的位置
//为了精确这里使用i * 0.01 得到当前点的坐标
Vector3
vec = myBezier.GetPointAtTime( (float)(i *0.01) );
//把每条线段绘制出来 完毕白塞尔曲线的绘制
YellowlineRenderer.SetPosition(i
-1,vec);
}
}
}
|
OK 这里贝塞尔曲线的原理就已经完毕。以下我们学习在NGUI中怎样使用贝塞尔曲线。刚刚我们说过贝塞尔曲线是由2个固定点 加两个动态点来完毕的,事实上我们在开发中往往仅仅须要3个点。
1 起点 2 中间点 3 结束点 拖动这三个点都能够又一次计算曲线的轨迹这样才比較完美。例如以下图所看到的。这三个点都是能够随意拖动的。拖动结束后,黑色的线为用户拖拽点连接的直角线段。我们依据这三个点组成的直角线段计算它们之间的贝塞尔曲线,也就是图中黄色的线段。
简单的进行拖拽一下,是不是感觉贝塞尔曲线非常酷炫呢?哇咔咔。
" src="http://www.cgzhw.com/wp-content/uploads/2014/07/423.png" style="">
我们来看看代码实现的部分,事实上原理和上面全然一样。
BallMove.cs绑定在这三个能够拖拽的点上,让拖动小球后小球可尾随手指移动。
using System.Collections;
public class BallMove : MonoBehaviour
{
void OnDrag (Vector2 delta)
{
float movex = transform.localPosition.x + (delta.x / 3);
float movey = transform.localPosition.y + (delta.y / 3);
//避免越界操作,这里能够进行一些推断
transform.localPosition = new Vector3(movex,movey ,transform.localPosition.z);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
using
UnityEngine;
using System.Collections;
public class
BallMove : MonoBehaviour {
void
OnDrag (Vector2 delta)
{
float
movex = transform.localPosition.x + (delta.x / 3); float
movey = transform.localPosition.y + (delta.y / 3);
//避免越界操作,这里能够进行一些推断
transform.localPosition
= new Vector3(movex,movey ,transform.localPosition.z);
}
}
|
如此一来触摸小球后,小球将尾随用户手指移动。以下我们将监听用户触摸小球后的坐标来计算它们三点之间的贝塞尔曲线。
BallInit.cs挂在摄像机上
using System.Collections;
public class BallInit : MonoBehaviour {
//黑色直角线段
LineRenderer lineRenderer0;
LineRenderer lineRenderer1;
//贝塞尔曲线
LineRenderer BezierRenderer;
//三个小球触摸对象
public GameObject mark0;
public GameObject mark1;
public GameObject mark2;
//算法公式类
private Bezier myBezier;
void Start ()
{
//分别得到黑色直角线段 与黄色贝塞尔曲线的 线段组件
lineRenderer0 = GameObject.Find("line0").GetComponent<LineRenderer>();
lineRenderer1 = GameObject.Find("line1").GetComponent<LineRenderer>();
BezierRenderer = GameObject.Find("Bezier").GetComponent<LineRenderer>();
//黑色直角是有两个线段组成
lineRenderer0.SetVertexCount(2);
lineRenderer1.SetVertexCount(2);
//为了让贝塞尔曲线仔细一些 设置它有100个点组成
BezierRenderer.SetVertexCount(100);
}
void Update ()
{
//mark0 表示中间的小球
//mark1 表示右边的小球
//mark2 表示左边的小球
//中间的标志点分别减去左右两边的标志点,计算出曲线的X Y 的点
float y = (mark0.transform.position.y - mark2.transform.position.y) ;
float x = (mark0.transform.position.x - mark2.transform.position.x) ;
//由于我们是通过3个点来确定贝塞尔曲线, 所以參数3 设置为0 就可以。
//这样參数1 表示起点 參数2表示中间点 參数3 忽略 參数4 表示结束点
myBezier = new Bezier( mark2.transform.position, new Vector3(x,y,0f), new Vector3(0f,0f,0f), mark1.transform.position );
//绘制贝塞尔曲线
for(int i =1; i <= 100; i++)
{
Vector3 vec = myBezier.GetPointAtTime( (float)(i * 0.01) );
BezierRenderer.SetPosition(i -1,vec);
}
//绘制直角黑色标志线段
lineRenderer0.SetPosition(0,mark0.transform.position);
lineRenderer0.SetPosition(1,mark2.transform.position);
lineRenderer1.SetPosition(0,mark0.transform.position);
lineRenderer1.SetPosition(1,mark1.transform.position);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
using
UnityEngine;
using System.Collections;
public class
BallInit : MonoBehaviour {
//黑色直角线段
LineRenderer
lineRenderer0;
LineRenderer lineRenderer1;
//贝塞尔曲线
LineRenderer BezierRenderer;
//三个小球触摸对象
public
GameObject mark0;
public
GameObject mark1; public
GameObject mark2; //算法公式类
private
Bezier myBezier;
void
Start () {
//分别得到黑色直角线段 与黄色贝塞尔曲线的 线段组件
lineRenderer0
= GameObject.Find("line0").GetComponent<LineRenderer>();
lineRenderer1
= GameObject.Find("line1").GetComponent<LineRenderer>(); BezierRenderer
= GameObject.Find("Bezier").GetComponent<LineRenderer>();
//黑色直角是有两个线段组成
lineRenderer0.SetVertexCount(2);
lineRenderer1.SetVertexCount(2);
//为了让贝塞尔曲线仔细一些 设置它有100个点组成
BezierRenderer.SetVertexCount(100);
}
void
Update () {
//mark0 表示中间的小球
//mark1 表示右边的小球
//mark2 表示左边的小球
//中间的标志点分别减去左右两边的标志点。计算出曲线的X Y 的点
float
y = (mark0.transform.position.y - mark2.transform.position.y) ; float
x = (mark0.transform.position.x - mark2.transform.position.x) ; //由于我们是通过3个点来确定贝塞尔曲线, 所以參数3 设置为0 就可以。
//这样參数1 表示起点 參数2表示中间点 參数3 忽略 參数4 表示结束点
myBezier
= new Bezier( mark2.transform.position, new Vector3(x,y,0f), new Vector3(0f,0f,0f), mark1.transform.position ); //绘制贝塞尔曲线
for(int
i =1; i <= 100; i++) {
Vector3 vec
= myBezier.GetPointAtTime( (float)(i * 0.01) ); BezierRenderer.SetPosition(i
-1,vec);
}
//绘制直角黑色标志线段
lineRenderer0.SetPosition(0,mark0.transform.position);
lineRenderer0.SetPosition(1,mark2.transform.position);
lineRenderer1.SetPosition(0,mark0.transform.position);
lineRenderer1.SetPosition(1,mark1.transform.position);
}
}
|
NGUI研究之在Unity中使用贝塞尔曲线的更多相关文章
- NGUI研究院之在Unity中使用贝塞尔曲线(六)[转]
鼎鼎大名的贝塞尔曲线相信大家都耳熟能详.这两天因为工作的原因需要将贝塞尔曲线加在工程中,那么MOMO迅速的研究了一下成果就分享给大家了哦.贝塞尔曲线的原理是由两个点构成的任意角度的曲线,这两个点一个是 ...
- 在Unity中使用贝塞尔曲线(转)
鼎鼎大名的贝塞尔曲线相信大家都耳熟能详.这两天因为工作的原因需要将贝塞尔曲线加在工程中,那么MOMO迅速的研究了一下成果就分享给大家了哦.贝塞尔曲线的原理是由两个点构成的任意角度的曲线,这两个点一个是 ...
- 【Unity3d游戏开发】游戏中的贝塞尔曲线以及其在Unity中的实现
RT,马三最近在参与一款足球游戏的开发,其中涉及到足球的各种运动轨迹和路径,比如射门的轨迹,高吊球,香蕉球的轨迹.最早的版本中马三是使用物理引擎加力的方式实现的足球各种运动,后来的版本中使用了根据物理 ...
- Unity3d游戏中自定义贝塞尔曲线编辑器[转]
关于贝塞尔曲线曲线我们再前面的文章提到过<Unity 教程之-在Unity3d中使用贝塞尔曲线>,那么本篇文章我们来深入学习下,并自定义实现贝塞尔曲线编辑器,贝塞尔曲线是最基本的曲线,一般 ...
- svg path中的贝塞尔曲线
首先介绍以下什么是贝塞尔曲线 贝塞尔曲线又叫贝茨曲线(Bezier),由两个端点以及若干个控制点组成,只有两个端点在曲线上,控制点不在曲线上,只是控制曲线的走向. 控制点个数为0时,它是一条直线; 控 ...
- Unity游戏中使用贝塞尔曲线
孙广东 2015.8.15 比方在3D rpg游戏中.我们想设置弹道,不同的轨迹类型! 目的:这篇文章的主要目的是要给你关于在游戏怎样使用贝塞尔曲线的基本想法. 贝塞尔曲线是最主要的曲线,一般用在 ...
- Canvas中绘制贝塞尔曲线
① 什么是贝塞尔曲线? 在数学的数值分析领域中,贝济埃曲线(英语:Bézier curve,亦作“贝塞尔”)是计算机图形学中相当重要的参数曲线.更高维度的广泛化贝济埃曲线就称作贝济埃曲面,其中贝济埃三 ...
- AI: 字体设计中的贝塞尔曲线
http://www.xueui.cn/tutorials/illustrator-tutorials/designers-must-know-the-secret-of-the-bezier-cur ...
- 关于Unity中的NGUI和UGUI
一.用Unity开发2D游戏,有三套关系 1.GUI:Unity本身自带的GUI 2.NGUI:以前在Unity中广泛来做2D的,是第三方的包,需要安装 3.UGUI:Unity5.X后(其实是Uni ...
随机推荐
- 安装Oracle时可能碰到的常见问题-1
安装Oracle可能有些人觉得是一件非常easy的事情,但事实上是在安装的过程中蕴含着丰富的知识点.尤其安装在Linux平台,可能会碰到这样或那样各种诡异的问题,透过问题看到本质,这才是从深处理解Or ...
- LLBL Gen Pro 5.0
LLBL Gen Pro 5.0 企业应用开发入门 Solutions Design 公司于2016年5月发布了LLBL Gen Pro 5.0,这个新版本的发布出乎于我的意料.我的猜想是从4.2升级 ...
- clientdataset<---->json
现在,DATASNAP倾向于使用JSON作为统一的数据序列格式,以期达到跨平台的效果.于是使用JSON便成为热点. unit uJSONDB; interface uses SysUtils, C ...
- Java中ArrayList和LinkedList差别
一般大家都知道ArrayList和LinkedList的大致差别: 1.ArrayList是实现了基于动态数组的数据结构,LinkedList基于链表的数据结构. 2.对于随机訪问get和set.A ...
- linux c编程 多线程(初级)《转载》---赠人玫瑰,手有余香!
原文地址:http://blog.csdn.net/liang890319/article/details/8393120 进程简单的说就是把一段代码复制成多份,并让他们同时执行.进程间通信是为了 ...
- Jquery发送ajax请求以及datatype参数为text/JSON方式
Jquery发送ajax请求以及datatype参数为text/JSON方式 1.方式一:datatype:'text' 2.方式二:datatype:'JSON' 3.使用gson-1.5.jar包 ...
- System.getProperty("catalina.home")
System.getProperty("catalina.base"),服务器配置目录
- 键盘游戏之canvas--用OO方式写
虽然写的不是很好,但 解释权以及版权仍然归13东倍所有! <!DOCTYPE HTML> <html> <head> <title>canvas-00 ...
- 使用Delphi声明C++带函数的结构体实战 good
在小组开发中,应用程序部分采用Delphi7,一些组件使用C++做.在今天将一个动态库的C++接口声明头文件转换为D7的Unit单元时,一切都很顺利,直到遇到下面这样一个另类的东西: typedef ...
- java反射机制 + Method.invoke解释 getMethod + 反射理解
功能: 通过读取另一个Dll去创建一个控件(Form,Button,TextBox,DataGridView),然后对当中一些属性进行检查. 创建控件的大致流程是,Assembly->Modul ...