HDU 5860 Death Sequence(递推)
HDU 5860 Death Sequence(递推)
题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5860
Description
You may heard of the Joseph Problem, the story comes from a Jewish historian living in 1st century. He and his 40 comrade soldiers were trapped in a cave, the exit of which was blocked by Romans. They chose suicide over capture and decided that they would form a circle and start killing themselves using a step of three. Josephus states that by luck or maybe by the hand of God, he and another man remained the last and gave up to the Romans.
Now the problem is much easier: we have N men stand in a line and labeled from 1 to N, for each round, we choose the first man, the k+1-th one, the 2*k+1-th one and so on, until the end of the line. These poor guys will be kicked out of the line and we will execute them immediately (may be head chop, or just shoot them, whatever), and then we start the next round with the remaining guys. The little difference between the Romans and us is, in our version of story, NO ONE SURVIVES. Your goal is to find out the death sequence of the man.
For example, we have N = 7 prisoners, and we decided to kill every k=2 people in the line. At the beginning, the line looks like this:
1 2 3 4 5 6 7after the first round, 1 3 5 7 will be executed, we have2 4 6and then, we will kill 2 6 in the second round. At last 4 will be executed. So, you need to output 1 3 5 7 2 6 4. Easy, right?
But the output maybe too large, we will give you Q queries, each one contains a number m, you need to tell me the m-th number in the death sequence.
Input
Multiple cases. The first line contains a number T, means the number of test case. For every case, there will be three integers N (1<=N<=3000000), K(1<=K), and Q(1<=Q<=1000000), which indicate the number of prisoners, the step length of killing, and the number of query. Next Q lines, each line contains one number m(1<=m<=n).
Output
For each query m, output the m-th number in the death sequence.
Sample Input
1
7 2 7
1
2
3
4
5
6
7
Sample Output
1
3
5
7
2
6
4
题意:
给你n个人排成一列编号,每次杀第一个人第i×k+1个人一直杀到没的杀。然后剩下的人重新编号从1~剩余的人数。按照上面的方式杀。问第几次杀的是谁。
题解:
这道题首先我们先将编号改成从0开始。这样如果i%k0那么我们可以知道第i个数字第一轮就被杀死。如果i%k!=0,那么我们知道在这之前一轮杀死了i/k+1个人。这样我们就得到递推式。
定义dp[i]代表第i轮杀死多少人。num[i]表示i在当前轮第几个被杀死。
对于i%k0我们可以知道第一轮被杀死,所以dp[i]=0,num[i]=i/k+1。
对于i%k!=0通过前面我们知道他们的状态和i-i/k-1有关。故dp[i]=dp[i-i/k-1]+1,num[i]=num[i-i/k-1]。
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 3001000;
int dp[maxn],num[maxn],add[maxn],ans[maxn];
int n,k,q;
void init()
{
int temp = n;
int acl = 0;
add[0] = 0; //add[i]前i轮kill几个;
while (temp){
acl++;
add[acl] = add[acl-1] + (temp-1)/k+1;
temp -= (temp-1)/k+1;
}
for (int i = 0; i < n; i++){
if (i%k == 0){
dp[i] = 0;
num[i] = i/k+1;
}else {
dp[i] = dp[i-i/k-1] + 1;
num[i] = num[i-i/k-1];
}
}
for (int i = 0; i < n; i++){
ans[add[dp[i]]+num[i]] = i;
}
}
int main()
{
int t;
scanf("%d",&t);
while (t--){
scanf("%d %d %d",&n,&k,&q);
init();
int cha;
while (q--){
scanf("%d",&cha);
printf("%d\n",ans[cha]+1);
}
}
return 0;
}
HDU 5860 Death Sequence(递推)的更多相关文章
- hdu 5860 Death Sequence(递推+脑洞)
Problem Description You may heard of the Joseph Problem, the story comes from a Jewish historian liv ...
- HDU 5860 Death Sequence(死亡序列)
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...
- HDU 5950 Recursive sequence 递推转矩阵
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- hdu 5950 Recursive sequence 递推式 矩阵快速幂
题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...
- 2016 Multi-University Training Contest 10 || hdu 5860 Death Sequence(递推+单线约瑟夫问题)
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5860 题目大意:给你n个人排成一列编号,每次杀第一个人第i×k+1个人一直杀到没的杀.然后 ...
- HDU 5860 Death Sequence
用线段树可以算出序列.然后o(1)询问. #pragma comment(linker, "/STACK:1024000000,1024000000") #include<c ...
- HDU 2085 核反应堆 --- 简单递推
HDU 2085 核反应堆 /* HDU 2085 核反应堆 --- 简单递推 */ #include <cstdio> ; long long a[N], b[N]; //a表示高能质点 ...
- hdu-5496 Beauty of Sequence(递推)
题目链接: Beauty of Sequence Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java ...
- hdu 2604 Queuing(dp递推)
昨晚搞的第二道矩阵快速幂,一开始我还想直接套个矩阵上去(原谅哥模板题做多了),后来看清楚题意后觉得有点像之前做的数位dp的水题,于是就用数位dp的方法去分析,推了好一会总算推出它的递推关系式了(还是菜 ...
随机推荐
- 自己动手写spring容器(3)
好久没有写博客了,今天闲下来将之前未完成的表达出来. 在之前的文章自己动手写spring容器(2)中完成了对spring的依赖注入的实现,这篇将会介绍spring基于注解的依赖注入的实现. 在一般的J ...
- 关于JSF国际化问题
由于最近一个项目的MVC层框架用的是JSF,所以在摸索中遇到了不少的问题,其中有一项就是关于国际化的的问题. 小弟在网上找了很多的资料,其实无外乎内容就都那样,可不知是小弟人品太差还是由于确实技术上有 ...
- JAXP的SAX解析
* 使用Sax解析XML文档 * * 使用Sax解析文档和DOM解析不一样. * 概述: * 是一种XML解析的替代方法.相比于DOM,SAX是一种速度更快,更有效的方法.它逐行扫描文档,一 ...
- 最新samba.tar.gz安装方法
看了韩顺平老师的samba.rpm包安装后,想自己也动手试试,便在samba官网找啊找,只找到一个tar.gz包,于是开始了这一段漫长的跨时两天的安装旅途... 1.首先,看看系统是否已经安装了sam ...
- Address already in use: JVM_Bind(端口冲突)
1.错误描述 2011-7-20 11:05:18 org.apache.catalina.core.StandardServer await严重: StandardServer.await: cre ...
- 部署开启了Kerberos身份验证的大数据平台集群外客户端
转载请注明出处 :http://www.cnblogs.com/xiaodf/ 本文档主要用于说明,如何在集群外节点上,部署大数据平台的客户端,此大数据平台已经开启了Kerberos身份验证.通过客户 ...
- JS设计模式之观察者模式
观察者模式,即发布与订阅模式,实现一对多的一种关系模式,当一种对象接受信号时其他所有依赖均有行为.我们在写code的时候总是会去自定义一些事件,这就是观察者常常使用的地方: JS中的观察者模式应用: ...
- Hibernate3 第二天
Hibernate3 第二天 第一天回顾: 三个准备 创建数据库 准备po和hbm文件 准备灵魂文件hibernate.cfg.xml 七个步骤 1 加载配置文件Configuration 2 创建会 ...
- Composer入门
摘要 本文介绍Composer的入门知识,包括require和autoload部分. Java有Maven, Node.js有npm, ROR有gem, 这些语言的程序员在开心地使用包管理工具加速开发 ...
- hdu1040
#include<stdio.h>#include<stdlib.h>int a[100];int cmp(const void *a,const void *b){ retu ...
题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5860
Description
You may heard of the Joseph Problem, the story comes from a Jewish historian living in 1st century. He and his 40 comrade soldiers were trapped in a cave, the exit of which was blocked by Romans. They chose suicide over capture and decided that they would form a circle and start killing themselves using a step of three. Josephus states that by luck or maybe by the hand of God, he and another man remained the last and gave up to the Romans.
Now the problem is much easier: we have N men stand in a line and labeled from 1 to N, for each round, we choose the first man, the k+1-th one, the 2*k+1-th one and so on, until the end of the line. These poor guys will be kicked out of the line and we will execute them immediately (may be head chop, or just shoot them, whatever), and then we start the next round with the remaining guys. The little difference between the Romans and us is, in our version of story, NO ONE SURVIVES. Your goal is to find out the death sequence of the man.
For example, we have N = 7 prisoners, and we decided to kill every k=2 people in the line. At the beginning, the line looks like this:
1 2 3 4 5 6 7after the first round, 1 3 5 7 will be executed, we have2 4 6and then, we will kill 2 6 in the second round. At last 4 will be executed. So, you need to output 1 3 5 7 2 6 4. Easy, right?
But the output maybe too large, we will give you Q queries, each one contains a number m, you need to tell me the m-th number in the death sequence.
Input
Multiple cases. The first line contains a number T, means the number of test case. For every case, there will be three integers N (1<=N<=3000000), K(1<=K), and Q(1<=Q<=1000000), which indicate the number of prisoners, the step length of killing, and the number of query. Next Q lines, each line contains one number m(1<=m<=n).
Output
For each query m, output the m-th number in the death sequence.
Sample Input
1
7 2 7
1
2
3
4
5
6
7
Sample Output
1
3
5
7
2
6
4
题意:
给你n个人排成一列编号,每次杀第一个人第i×k+1个人一直杀到没的杀。然后剩下的人重新编号从1~剩余的人数。按照上面的方式杀。问第几次杀的是谁。
题解:
这道题首先我们先将编号改成从0开始。这样如果i%k0那么我们可以知道第i个数字第一轮就被杀死。如果i%k!=0,那么我们知道在这之前一轮杀死了i/k+1个人。这样我们就得到递推式。
定义dp[i]代表第i轮杀死多少人。num[i]表示i在当前轮第几个被杀死。
对于i%k0我们可以知道第一轮被杀死,所以dp[i]=0,num[i]=i/k+1。
对于i%k!=0通过前面我们知道他们的状态和i-i/k-1有关。故dp[i]=dp[i-i/k-1]+1,num[i]=num[i-i/k-1]。
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 3001000;
int dp[maxn],num[maxn],add[maxn],ans[maxn];
int n,k,q;
void init()
{
int temp = n;
int acl = 0;
add[0] = 0; //add[i]前i轮kill几个;
while (temp){
acl++;
add[acl] = add[acl-1] + (temp-1)/k+1;
temp -= (temp-1)/k+1;
}
for (int i = 0; i < n; i++){
if (i%k == 0){
dp[i] = 0;
num[i] = i/k+1;
}else {
dp[i] = dp[i-i/k-1] + 1;
num[i] = num[i-i/k-1];
}
}
for (int i = 0; i < n; i++){
ans[add[dp[i]]+num[i]] = i;
}
}
int main()
{
int t;
scanf("%d",&t);
while (t--){
scanf("%d %d %d",&n,&k,&q);
init();
int cha;
while (q--){
scanf("%d",&cha);
printf("%d\n",ans[cha]+1);
}
}
return 0;
}
Problem Description You may heard of the Joseph Problem, the story comes from a Jewish historian liv ...
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5860 题目大意:给你n个人排成一列编号,每次杀第一个人第i×k+1个人一直杀到没的杀.然后 ...
用线段树可以算出序列.然后o(1)询问. #pragma comment(linker, "/STACK:1024000000,1024000000") #include<c ...
HDU 2085 核反应堆 /* HDU 2085 核反应堆 --- 简单递推 */ #include <cstdio> ; long long a[N], b[N]; //a表示高能质点 ...
题目链接: Beauty of Sequence Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java ...
昨晚搞的第二道矩阵快速幂,一开始我还想直接套个矩阵上去(原谅哥模板题做多了),后来看清楚题意后觉得有点像之前做的数位dp的水题,于是就用数位dp的方法去分析,推了好一会总算推出它的递推关系式了(还是菜 ...
好久没有写博客了,今天闲下来将之前未完成的表达出来. 在之前的文章自己动手写spring容器(2)中完成了对spring的依赖注入的实现,这篇将会介绍spring基于注解的依赖注入的实现. 在一般的J ...
由于最近一个项目的MVC层框架用的是JSF,所以在摸索中遇到了不少的问题,其中有一项就是关于国际化的的问题. 小弟在网上找了很多的资料,其实无外乎内容就都那样,可不知是小弟人品太差还是由于确实技术上有 ...
* 使用Sax解析XML文档 * * 使用Sax解析文档和DOM解析不一样. * 概述: * 是一种XML解析的替代方法.相比于DOM,SAX是一种速度更快,更有效的方法.它逐行扫描文档,一 ...
看了韩顺平老师的samba.rpm包安装后,想自己也动手试试,便在samba官网找啊找,只找到一个tar.gz包,于是开始了这一段漫长的跨时两天的安装旅途... 1.首先,看看系统是否已经安装了sam ...
1.错误描述 2011-7-20 11:05:18 org.apache.catalina.core.StandardServer await严重: StandardServer.await: cre ...
转载请注明出处 :http://www.cnblogs.com/xiaodf/ 本文档主要用于说明,如何在集群外节点上,部署大数据平台的客户端,此大数据平台已经开启了Kerberos身份验证.通过客户 ...
观察者模式,即发布与订阅模式,实现一对多的一种关系模式,当一种对象接受信号时其他所有依赖均有行为.我们在写code的时候总是会去自定义一些事件,这就是观察者常常使用的地方: JS中的观察者模式应用: ...
Hibernate3 第二天 第一天回顾: 三个准备 创建数据库 准备po和hbm文件 准备灵魂文件hibernate.cfg.xml 七个步骤 1 加载配置文件Configuration 2 创建会 ...
摘要 本文介绍Composer的入门知识,包括require和autoload部分. Java有Maven, Node.js有npm, ROR有gem, 这些语言的程序员在开心地使用包管理工具加速开发 ...
#include<stdio.h>#include<stdlib.h>int a[100];int cmp(const void *a,const void *b){ retu ...