D. Jzzhu and Numbers

这就是这个题目的意思,真的感觉这个思想是太神奇了,我这种菜逼现在绝壁想不到这样的证明的过程的,还有就是这个题的推道过程,以下思路纯属借鉴卿学姐的,还是自己太菜了,,,,
讲道理这种问题我真的想不到用容斥原理来做啊,那现在我就用容斥原理来讲一下这个问题,,,
|!A1∩!A2∩!A3∩....!An|=sum-奇数的组合+偶数的组合。。。。
!A1代表的就第一个位置为0的方案,同理其他的以此类推。。。
我们知道要是一个数x&i=i; 那么x和i有可能的关系就是x>=i 就是i有一的位置x的位置是肯定有1的。。
经过我今天早上的疯狂的找原题,今天终于在codeforce找到了原题,要是一共有20位的话,总共的所有的情况就是2^20-1 ,这个子的话我们只要算出来
aj&i=i有多少种数据就行了,这样子的话我们再统计i中的1的个数,这样子的话我们就能用dp来做这个问题了,我们用dp[i][k]代表前i位有可能和k不同的&k=k的数量,所以当第i为为0的时候那么 dp[i][k]+=dp[i-1][k]+dp[i-1][k+2^i];
那么当第i位为1的时候,dp[i][k]+=dp[i-1][k],那么就是代表第i为必定相同,然后再根据容斥原理的定义这个题到此已经完成。。。
泣不成声啊! 妈的竟然过了。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const ll mod=1000000007;
const int N=1e6+5;
ll dp[22][1000003];
ll g[N];
int a[N];
int s[N];
void inist(int n)
{
g[0]=1;
for(int i=1;i<=n;i++)
{
g[i]=2*g[i-1];
g[i]%=mod;
dp[0][a[i]]++;
}
}
void work(int k,int n)
{
// 一共k-1位
for(int i=1;i<k;i++)
{
for(int j=1;j<=1000000;j++)
{
if(j&(1<<(i-1)))
{
dp[i][j]=dp[i-1][j];
s[j]^=1;
}
else
{
dp[i][j]=dp[i-1][j];
if((j|(1<<(i-1)))>1e6) continue;
dp[i][j]+=dp[i-1][j|(1<<(i-1))];
}
} }
int num=k-1;
ll ans=(g[n]-1+mod)%mod;
for(int i=1;i<=1000001;i++)
{
if(s[i]==0) {ans=(ans+g[dp[20][i]]%mod)%mod; ans=(ans-1+mod)%mod;}
else {ans=(ans-g[dp[20][i]]%mod)%mod; ans=(ans+1+mod)%mod;}
}cout<<ans<<endl;
}
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
inist(n);
work(21,n);
}
D. Jzzhu and Numbers的更多相关文章
- Codeforces Round #257 (Div. 1) D - Jzzhu and Numbers 容斥原理 + SOS dp
D - Jzzhu and Numbers 这个容斥没想出来... 我好菜啊.. f[ S ] 表示若干个数 & 的值 & S == S得 方案数, 然后用这个去容斥. 求f[ S ] ...
- Jzzhu and Numbers
Jzzhu and Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces 449D Jzzhu and Numbers
http://codeforces.com/problemset/problem/449/D 题意:给n个数,求and起来最后为0的集合方案数有多少 思路:考虑容斥,ans=(-1)^k*num(k) ...
- Codeforces.449D.Jzzhu and Numbers(容斥 高维前缀和)
题目链接 \(Description\) 给定\(n\)个正整数\(a_i\).求有多少个子序列\(a_{i_1},a_{i_2},...,a_{i_k}\),满足\(a_{i_1},a_{i_2}, ...
- Jzzhu and Numbers CodeForces - 449D (高维前缀和,容斥)
大意: 给定集合a, 求a的按位与和等于0的非空子集数. 首先由容斥可以得到 $ans = \sum \limits_{0\le x <2^{20}} (-1)^{\alpha} f_x$, 其 ...
- 【CF449D】Jzzhu and Numbers
题目 提供一个非容斥做法--\(FWT\) 我们发现我们要求的东西就是一个背包,只不过是在\(and\)意义下的 自然有 \[dp_{i,j}=\sum_{k\&a_i=j}dp_{i-1,k ...
- cf449D. Jzzhu and Numbers(容斥原理 高维前缀和)
题意 题目链接 给出\(n\)个数,问任意选几个数,它们\(\&\)起来等于\(0\)的方案数 Sol 正解居然是容斥原理Orz,然而本蒟蒻完全想不到.. 考虑每一种方案 答案=任意一种方案 ...
- Codeforces 449D Jzzhu and Numbers(高维前缀和)
[题目链接] http://codeforces.com/problemset/problem/449/D [题目大意] 给出一些数字,问其选出一些数字作or为0的方案数有多少 [题解] 题目等价于给 ...
- CF449D Jzzhu and Numbers
题解 刚刚学习了高维前缀和 这道题就肥肠简单了 高维前缀和其实原理肥肠简单 就是每次只考虑一维,然后只做这一维的前缀和 最后求出的就是总前缀和了 那么对于这道题 也就很简单了 发现选择的所有数每一位都 ...
随机推荐
- iOS9网络适配
今天升级Xcode7.0,发现网络访问失败. 输出错误信息:The resource could not be loaded because the App Transport Security po ...
- UVa 10382 - Watering Grass
题目大意:有一条长为l,宽为w的草坪,在草坪上有n个洒水器,给出洒水器的位置和洒水半径,求能浇灌全部草坪范围的洒水器的最小个数. 经典贪心问题:区间覆盖.用计算几何对洒水器的覆盖范围简单处理一下即可得 ...
- maven 第一次运行报错
在大中国的网络环境下,使用一些国外的资源,是一件很痛苦的事情... 大概在好几个月以前,一个同事跟我说,没事的时候学习maven,现在公司项目都用这个做管理 还给了我电子书<Maven实战> ...
- bootstrap中下拉菜单点击事件 uncaught syntaxerror unexpected end of input异常问题
原代码: <ul class="dropdown-menu" role="menu"> <li><a href="jav ...
- 【bzoj3998】 TJOI2015—弦论
http://www.lydsy.com/JudgeOnline/problem.php?id=3998 (题目链接) 题意 给出一个字符串,求它的字典序第K小的子串是什么,分情况讨论不在同一位置的相 ...
- CentOS 7.0编译安装Nginx1.6.0+MySQL5.6.19+PHP5.5.14方法分享
一.配置防火墙,开启80端口.3306端口 CentOS 7.0默认使用的是firewall作为防火墙,这里改为iptables防火墙. 1.关闭firewall: systemctl stop fi ...
- QT第一天学习
sudo apt-get install libqt4-dev回顾: 面向对象方法: 封装.继承.多态 封装:类 数据和操作 实现了信息隐藏 public: 类的内部 类的外部 private: pr ...
- iOS oc和swift中协议的使用
创建一个空的工程 在工程中我们新建一个类 继承与NSObject 定义一个协议‘ @protocol UpdateAlertDelegate <NSObject> //这里的红色字体就是我 ...
- flex blazeds地址
flex blazeds地址 BlazeDS地址:http://sourceforge.net/adobe/blazeds/wiki/Home/最新BlazeDS版本是2011年编译的4.0.1.21 ...
- Chrome控制台详解
Chrome控制台详解 http://www.codeceo.com/article/chrome-console.html console.log('%casdf','font-size:16px; ...