CF 787D Legacy(线段树思想构图+最短路)
2 seconds
256 megabytes
standard input
standard output
Rick and his co-workers have made a new radioactive formula and a lot of bad guys are after them. So Rick wants to give his legacy to Morty before bad guys catch them.
There are n planets in their universe numbered from 1 to n. Rick is in planet number s (the earth) and he doesn't know where Morty is. As we all know, Rick owns a portal gun. With this gun he can open one-way portal from a planet he is in to any other planet (including that planet). But there are limits on this gun because he's still using its free trial.

By default he can not open any portal by this gun. There are q plans in the website that sells these guns. Every time you purchase a plan you can only use it once but you can purchase it again if you want to use it more.
Plans on the website have three types:
- With a plan of this type you can open a portal from planet v to planet u.
- With a plan of this type you can open a portal from planet v to any planet with index in range [l, r].
- With a plan of this type you can open a portal from any planet with index in range [l, r] to planet v.
Rick doesn't known where Morty is, but Unity is going to inform him and he wants to be prepared for when he finds and start his journey immediately. So for each planet (including earth itself) he wants to know the minimum amount of money he needs to get from earth to that planet.
The first line of input contains three integers n, q and s (1 ≤ n, q ≤ 105, 1 ≤ s ≤ n) — number of planets, number of plans and index of earth respectively.
The next q lines contain the plans. Each line starts with a number t, type of that plan (1 ≤ t ≤ 3). If t = 1 then it is followed by three integers v, u and w where w is the cost of that plan (1 ≤ v, u ≤ n, 1 ≤ w ≤ 109). Otherwise it is followed by four integers v, l, r and w where w is the cost of that plan (1 ≤ v ≤ n, 1 ≤ l ≤ r ≤ n, 1 ≤ w ≤ 109).
In the first and only line of output print n integers separated by spaces. i-th of them should be minimum money to get from earth to i-th planet, or - 1 if it's impossible to get to that planet.
3 5 1
2 3 2 3 17
2 3 2 2 16
2 2 2 3 3
3 3 1 1 12
1 3 3 17
0 28 12
4 3 1
3 4 1 3 12
2 2 3 4 10
1 2 4 16
0 -1 -1 12
In the first sample testcase, Rick can purchase 4th plan once and then 2nd plan in order to get to get to planet number 2.
题目链接:CF 787D
很脑洞的一道题,比较好的做法是用线段树分割区间的思想,把1-n看成区间构建两颗线段树A和B,然后把所有的子区间都看成一个点,这样后面的加边就是对这些区间加边了,构建好A和B,A父子节点之间自底向上加有向边,B树自顶向下加有向边,然后把B树的子节点加无向边到对应的A树的子节点,代表这些点可以推出(到达)哪些点,由于一开始在子节点s(A[s]还是B[s]无所谓,两者本来就是强连通的),哪里都不能去,因此最后要检查的就是B树的子节点的dis值(在A数的话哪里都可以)。
然后就是三种区间操作
1:u->v,加边$<A的叶子节点u,B的叶子节点v,w>$
2:u->[l,r],加边$<A的叶子节点u,\{B树中[l,r]区间对应的节点集合\},w>$
3:[l,r]->v,加边$<\{A树中[l,r]区间对应的节点集合\},B树的叶子节点v,w>$
这样一来三种边都不会多也不会少刚好可以到达正确的点。然后从B[s]的跑最短路即可,最后检查B[i]的dis即可,当然一开始要把A、B树的叶子节点记录下来方便后面加边使用
边数最坏情况应该是每一层左右均取两个区间,一直递归下去,有$log_{2}N$层,因此边数大约是$O(4*q*log_{2}N+2N)$
代码:
#include <stdio.h>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <bitset>
#include <string>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define fin(name) freopen(name,"r",stdin)
#define fout(name) freopen(name,"w",stdout)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1e5 + 7;
struct edge
{
int to, nxt;
LL w;
edge() {}
edge(int _to, int _nxt, LL _w): to(_to), nxt(_nxt), w(_w) {}
} E[N * 68];
int head[N << 2], tot;
LL d[N << 2];
bitset < N << 2 > vis;
int id[2][N << 2], sz;
vector<int>st;
int A[N], B[N]; void init()
{
CLR(head, -1);
tot = 0;
sz = 0;
}
inline void add(int s, int t, LL w)
{
E[tot] = edge(t, head[s], w);
head[s] = tot++;
}
void build(int k, int l, int r, int o)
{
id[o][k] = ++sz;
if (l == r)
{
if (o)
A[l] = id[o][k];
else
B[l] = id[o][k];
return ;
}
else
{
int mid = MID(l, r);
build(LC(k), l, mid, o);
build(RC(k), mid + 1, r, o);
if (o) //A树自底向上
{
add(id[o][LC(k)], id[o][k], 0);
add(id[o][RC(k)], id[o][k], 0);
}
else//B树自顶向下
{
add(id[o][k], id[o][LC(k)], 0);
add(id[o][k], id[o][RC(k)], 0);
}
}
}
void Findset(int k, int l, int r, int ql, int qr, int o)
{
if (ql <= l && r <= qr)
st.push_back(id[o][k]);
else
{
int mid = MID(l, r);
if (qr <= mid)
Findset(LC(k), l, mid, ql, qr, o);
else if (ql > mid)
Findset(RC(k), mid + 1, r, ql, qr, o);
else
Findset(LC(k), l, mid, ql, mid, o), Findset(RC(k), mid + 1, r, mid + 1, qr, o);
}
}
void SPFA(int s)
{
queue<int>Q;
Q.push(s);
vis.reset();
CLR(d, INF);
d[s] = 0;
while (!Q.empty())
{
int u = Q.front();
Q.pop();
vis[u] = 0;
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] > d[u] + E[i].w)
{
d[v] = d[u] + E[i].w;
if (!vis[v])
{
vis[v] = 1;
Q.push(v);
}
}
}
}
}
int main(void)
{
int n, q, s, i, ops;
while (~scanf("%d%d%d", &n, &q, &s))
{
init();
build(1, 1, n, 1);
build(1, 1, n, 0);
for (i = 1; i <= n; ++i)
{
add(A[i], B[i], 0);
add(B[i], A[i], 0);
}
for (i = 0; i < q; ++i)
{
scanf("%d", &ops);
if (ops == 1)
{
int u, v;
LL w;
scanf("%d%d%I64d", &u, &v, &w);
add(A[u], B[v], w);
}
else if (ops == 2)
{
int u, l, r;
LL w;
scanf("%d%d%d%I64d", &u, &l, &r, &w);
st.clear();
Findset(1, 1, n, l, r, 0);
for (auto &x : st)
add(A[u], x, w);
}
else if (ops == 3)
{
int v, l, r;
LL w;
scanf("%d%d%d%I64d", &v, &l, &r, &w);
st.clear();
Findset(1, 1, n, l, r, 1);
for (auto &x : st)
add(x, B[v], w);
}
}
SPFA(B[s]);
for (i = 1; i <= n; ++i)
printf("%I64d%c", d[B[i]] == 0x3f3f3f3f3f3f3f3f ? -1 : d[B[i]], " \n"[i == n]);
}
return 0;
}
CF 787D Legacy(线段树思想构图+最短路)的更多相关文章
- Codeforces 787D. Legacy 线段树建模+最短路
D. Legacy time limit per test:2 seconds memory limit per test:256 megabytes input:standard input out ...
- codeforces 787D - Legacy 线段树优化建图,最短路
题意: 有n个点,q个询问, 每次询问有一种操作. 操作1:u→[l,r](即u到l,l+1,l+2,...,r距离均为w)的距离为w: 操作2:[l,r]→u的距离为w 操作3:u到v的距离为w 最 ...
- Codeforces 787D Legacy 线段树 最短路
题意: 有\(n(1 \leq n \leq 10^5)\)个点,\(q(1 \leq q \leq 10^5)\)条路和起点\(s\) 路有三种类型: 从点\(v\)到点\(u\)需要花费\(w\) ...
- 【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- [CF787D]遗产(Legacy)-线段树-优化Dijkstra(内含数据生成器)
Problem 遗产 题目大意 给出一个带权有向图,有三种操作: 1.u->v添加一条权值为w的边 2.区间[l,r]->v添加权值为w的边 3.v->区间[l,r]添加权值为w的边 ...
- CF786B Legacy && 线段树优化连边
线段树优化连边 要求点 \(x\) 向区间 \([L, R]\) 连边, 一次的复杂度上限为 \(O(n)\) 然后弄成线段树的结构 先父子连边边权为 \(0\) 这样连边就只需要连父亲就可以等效于连 ...
- Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- Codeforces Round #406 (Div. 2) D. Legacy 线段树建模+最短路
D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- CodeForces - 786B Legacy (线段树+DIjkstra+思维)
题意:给N个点和Q条选项,有三种类型的选项:1.从u到v花费w修建一条路:2.从u到下标区间为[L,R]的点花费w修建一条路; 3.从下标区间为[L,R]的点到u花费w修建一条路. 然后求起点s到其余 ...
随机推荐
- 在jdbc基础上进阶一小步的C3p0 连接池(DBCP 不能读xml配置文件,已淘汰) 和DBUtils 中两个主要类QueryRunner和ResultSetHandler的使用
首先看C3p0这个连接池,最大优势可以自动读取默认的配置文件 <?xml version="1.0" encoding="UTF-8"?> < ...
- Webpack4 学习笔记一初探Webpack
前言 此内容是个人学习笔记,以便日后翻阅.非教程,如有错误还请指出 Webpack 打包文件 支持JS模块化 模式: production(0配置默认), development(生产环境) 更详细的 ...
- Delphi7程序调用C#写的DLL解决办法(转)
近来,因工作需要,必须解决Delphi7写的主程序调用C#写的dll的问题.在网上一番搜索,又经过种种试验,最终证明有以下两种方法可行: 编写C#dll的方法都一样,首先在vs2005中创建一个 ...
- 制作linux系统U盘并使用U盘安装CentOS7.6系统
目录 一.制作linux启动盘 1.1. 准备工作 1.2. 制作linux系统U盘 二.使用U盘安装Centos7.6 2.1. 使用U盘启动 2.2. 更改 ...
- IE hack 和手机尺寸
来自为知笔记(Wiz)
- FreeBSD--常用命令
FreeBSD常用命令 查看网络流量 a.systat -if 1 (1表示1s刷新屏幕一次) b.netstat 1 # Traffic 流量 peak 峰值 average 平均值 查看进程p ...
- MySQL数据库 : 查询语句,连接查询及外键约束
查询指定字段 select 字段1,字段2 from 表名; 消除重复行(重复指的是结果集中的所有完全重复行) select distinct 字段1,字段2.. ...
- 学习python第十四天,模块
Python 模块(Module),是一个 Python 文件,以 .py 结尾,包含了 Python 对象定义和Python语句. 模块让你能够有逻辑地组织你的 Python 代码段. 把相关的代码 ...
- 使用selenium模拟登录知乎
网上流传着许多抓取知乎数据的代码,抓取它的数据有一个问题一定绕不过去,那就是模拟登录,今天我们就来聊聊知乎的模拟登录. 获取知乎内容的方法有两种,一种是使用request,想办法携带cookies等必 ...
- Pandas 数据读取
1.读取table # 读取普通分隔数据:read_table # 可以读取txt,csv import os os.chdir('F:/') #首先设置一下读取的路径 data1 = pd.read ...