P3153 [CQOI2009]跳舞
题目描述
一次舞会有n个男孩和n个女孩。每首曲子开始时,所有男孩和女孩恰好配成n对跳交谊舞。每个男孩都不会和同一个女孩跳两首(或更多)舞曲。有一些男孩女孩相互喜欢,而其他相互不喜欢(不会”单向喜欢“)。每个男孩最多只愿意和k个不喜欢的女孩跳舞,而每个女孩也最多只愿意和k个不喜欢的男孩跳舞。给出每对男孩女孩是否相互喜欢的信息,舞会最多能有几首舞曲?
输入输出格式
输入格式:
第一行包含两个整数n和k。以下n行每行包含n个字符,其中第i行第j个字符为'Y'当且仅当男孩i和女孩j相互喜欢。
输出格式:
仅一个数,即舞曲数目的最大值。
输入输出样例
3 0
YYY
YYY
YYY
3
说明
N<=50 K<=30
Solution:
本题太毒,调了几天,终于又填完坑了~
像这种需要配对,而且数据还这么小的题目,一眼就容易想到网络最大流。
那么如果直接去跑最大流的话,显然不可行。
题意中说相同的两个人只能搭配一次,那么最多也就$50$次,很容易想到从大到小枚举天数然后跑最大流判断(我写了下枚举+最大流,事实证明是可以过的),但是,本题有很明显的单调性,即若前$i$天可以完整搭配,则答案一定在$[i,n]$之间,否则就在$[0,i-1]$之间。于是考虑二分答案,然后跑最大流$check$。
再来考虑最大流$check$是否可行。每个男生的点和女生的点相匹配,只有两种情况,要么不互相喜欢使用$1$次限制,要么互相喜欢不需要花费。
因为每人最多和不喜欢的匹配$k$次,于是我们将每个学生都拆成两个点,之间连边为$k$表示限制,假设男生$a$被拆为$a1,a2$($a1$是$a$的全局,$a2$是与$a$不互相喜欢的分点),女生$b$被拆为$b1,b2$(类比男生的含义),每次二分的天数$x$,重新建图:$s\rightarrow a1$连容量为$x$($s$为源点,该边表示每个人应该匹配$x$次),$a1\rightarrow a2$连容量为$k$(表示$a$最多和$k$个不喜欢的女生匹配),$b1,b2$类比男生连法($b2\rightarrow b1\;\;b1\rightarrow t$)。每次若男生$a$和女生$b$不喜欢,连容量为$1$的边$a2\rightarrow b2$,若$a$和$b$互相喜欢,则应直接连容量为$1$的边$a1\rightarrow b1$。
然后每次跑完最大流后,看最大流是否等于$x*n$,便能判断是否成立。(最后需要注意的是二分的边界值:$l=0,r=n$,最少就是$1$次也无法搭配,最多就是$n$人互相搭配一次)
代码:
#include<bits/stdc++.h>
#define il inline
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Min(a,b) ((a)>(b)?(b):(a))
#define debug printf("%d %s\n",__LINE__,__FUNCTION__)
using namespace std;
const int N=,inf=;
int s,t=,ans,dis[],n,k,to[N],net[N],h[],cnt=,w[N];
bool mp[][]; il void add(int u,int v,int c){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt,w[cnt]=c;} il bool bfs(){
queue<int>q;
memset(dis,-,sizeof(dis));
q.push(s),dis[s]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=h[u];i;i=net[i])
if(dis[to[i]]==-&&w[i]>)dis[to[i]]=dis[u]+,q.push(to[i]);
}
return dis[t]!=-;
} il int dfs(int u,int op){
if(u==t)return op;
int flow=,used=;
for(int i=h[u];i;i=net[i]){
int v=to[i];
if(dis[v]==dis[u]+&&w[i]>){
used=dfs(v,Min(w[i],op));
if(!used)continue;
flow+=used,op-=used;
w[i]-=used,w[i^]+=used;
if(!op)break;
}
}
if(!flow)dis[u]=-;
return flow;
} il bool check(int x){
memset(h,,sizeof(h));
cnt=;
For(i,,n){
add(s,i,x),add(i,s,);
add(i,i+n,k),add(i+n,i,);
add(i+n*,t,x),add(t,i+n*,);
add(i+n*,i+n*,k),add(i+n*,i+n*,);
}
For(i,,n) For(j,,n){
if(mp[i][j])add(i,j+*n,),add(j+*n,i,);
else add(i+n,j+*n,),add(j+*n,i+n,);
}
int tot=;
while(bfs())tot+=dfs(s,inf);
if(tot==n*x)return ;
return ;
} int main(){
ios::sync_with_stdio();
cin>>n>>k;
char p;
For(i,,n) For(j,,n) {
cin>>p;
if(p=='Y')mp[i][j]=;
if(n==&&(p=='Y'||k>=)){cout<<;return ;}
}
int mid,l=,r=n;
while(l<=r){
mid=l+r>>;
if(check(mid))l=mid+,ans=mid;
else r=mid-;
}
cout<<ans;
return ;
}
P3153 [CQOI2009]跳舞的更多相关文章
- [洛谷P3153] [CQOI2009]跳舞
题目大意:有n个女生,n个男生,每次一男一女跳舞.同一队只会跳一次.每个男孩最多只愿意和k个不喜欢的女孩跳舞,女孩同理.问舞会最多能有几首舞曲? 题解:二分跳了多少次舞,每次重建图,建超级原点和汇点, ...
- 题解 P3153 【[CQOI2009]跳舞】
P3153 [CQOI2009]跳舞 题目描述 一次舞会有n个男孩和n个女孩.每首曲子开始时,所有男孩和女孩恰好配成n对跳交谊舞.每个男孩都不会和同一个女孩跳两首(或更多)舞曲.有一些男孩女孩相互喜欢 ...
- [CQOI2009]跳舞 网络流
题面:[CQOI2009]跳舞 题解: 首先最大时间不好求,而且数据范围很小,所以我们可以先二分一个最大时间,然后就只需要判断是否可行即可. 因此我们每二分一个mid,对于每个女生,连s ---> ...
- [BZOJ1305][CQOI2009]跳舞(网络流)
1305: [CQOI2009]dance跳舞 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 3944 Solved: 1692[Submit][St ...
- [CQOI2009]跳舞
思路:二分答案+最大流.二分答案$m$,表示最多跳$m$轮.将每个人拆成两个点$a_i$$b_i$,$a_i$表示与任何人跳舞,$b_i$表示与不喜欢的人跳舞.对于第$i$个人,连一条从$a_i$到$ ...
- 1305. [CQOI2009]跳舞【最大流+二分】
Description 一次舞会有n个男孩和n个女孩.每首曲子开始时,所有男孩和女孩恰好配成n对跳交谊舞.每个男孩都不会和同一个女孩跳两首(或更多)舞曲.有一些男孩女孩相互喜欢,而其他相互不喜欢(不会 ...
- 【[CQOI2009]跳舞】
首先这种匹配类问题一看就是网络流了 之后想一想怎么搞 发现题目的意思是使得跳舞最少的男生跳的舞最多 很自然想到二分答案啊 现在转化成了一个判定性问题,能否使得所有人都跳上\(k\)只舞 由于喜欢和不喜 ...
- 题解 P1682 【过家家】
P1682 过家家 题目描述 有2n个小学生来玩过家家游戏,其中有n个男生,编号为1到n,另外n个女生,编号也是1到n.每一个女生可以先选择一个和她不吵嘴的男生来玩,除此之外,如果编号为X的女生的朋友 ...
- AHOI2018训练日程(3.10~4.12)
(总计:共90题) 3.10~3.16:17题 3.17~3.23:6题 3.24~3.30:17题 3.31~4.6:21题 4.7~4.12:29题 ZJOI&&FJOI(6题) ...
随机推荐
- 开发常用宏 - iOS
以下是一些开发中会经常用到的宏,简单的进行了整理,为了今后可以更加方便的使用,从而提升开发的效率,不为此搭进去更多时间. 也希望有大家可以补充,从而使其更加强加! /** * 开发常用宏相关 */ # ...
- Maven_项目管理工具
Maven 一.Maven是apache下的一个开源项目,是纯java开发,并且只是用来管理java项目的 二.Maven的好处: 0.节省空间:对jar包做了统一管理 依赖管理,项目里无需放jar包 ...
- linux系统批量创建用户和生成8位随机密码
1.1 脚本案例 批量创建20个用户,用户名为user1-user20,并生成8位随机登录密码,用户组采用键盘输入的方式,并将用户名及登录密码保存到/tmp/create_user.txt普通文 ...
- LINUX操作系统知识:进程与线程详解
当一个程序开始执行后,在开始执行到执行完毕退出这段时间内,它在内存中的部分就叫称作一个进程. Linux 是一个多任务的操作系统,也就是说,在同一时间内,可以有多个进程同时执行.我们大家常用的单CPU ...
- MySQL的备份
MySQL的备份 开启MySQL的log_bin 执行查看mysql的log_bin状态 > show variables like 'log_bin%'; +----------------- ...
- ASCII码排序 南阳acm4
ASCII码排序 时间限制:3000 ms | 内存限制:65535 KB 难度:2 描述 输入三个字符(可以重复)后,按各字符的ASCII码从小到大的顺序输出这三个字符. 输入 第一行输 ...
- python,多线程
多线程编程,模型复杂,容易发生冲突,必须用锁加以隔离,同时,又要小心死锁的发生. Python解释器由于设计时有GIL全局锁,导致了多线程无法利用多核.多线程的并发在Python中就是一个美丽的梦. ...
- div嵌套img高度不相同
div中嵌套img,如果div里嵌套一个img元素且div的高度是由img的高度来撑开,那么div的高度总会比img的高度多3px. 可以明显看到div实际高度高出img高度3px.为了解决此问题,我 ...
- [记读书笔]python3.5实现socket通讯(UDP)
UDP连接: 无连接,从一个端向另一端发送独立的数据分组 使用UDP连接的客户-服务器程序: UDPServer.py import socket serverPort = 50009 serverS ...
- Android Studio卡在refreshing gradle project的原因和快速解决办法
Android Studio更新后一直Refreshing的解决办法! 这个问题遇到过很多次,网上也有很多解决办法,但是好像都没有发现refreshing gradle project在做什么. 一般 ...