Time Limit: 3000MS
Memory Limit: 65536K

Total Submissions: 27109
Accepted: 7527

Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way.
After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.
His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.
As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

Source

Beijing 2005

【翻译】题目大意:有n个村庄要连在一起,村与村之间的长度为他们之间的水平距离,连在一起的花费是两村的高度差。现求所花费和与长度和之比最小。

分析:

      ①Sigma的比值可以想到使用01分数规划。

      ②01分数规划有两种实现方式:

               (1)dichotomy[有点慢] (2)Dinkelbach[超级快]

      ③所以整个程序就是01分数规划然后使用Prim求出最小生成树。

      ④Prim很快,代码又好写。

#include<math.h>
#include<stdio.h>
#define go(i,a,b) for(int i=a;i<=b;i++)
#define G(i,j) (g[i][j].cost-r1*g[i][j].len)
const int N=1010;int vis[N];
double Sqr(double a){return a*a;};
double Abs(double a){return a<0?-a:a;}
struct E{double cost,len;}g[N][N],e[N];
int n,x[N],y[N],h[N],T=-1e9;double d[N],r1,r2;
double Dis(int i,int j){return sqrt(Sqr(x[i]-x[j])+Sqr(y[i]-y[j]));} void Prim()
{
double C=0,D=0;d[1]=1e15;int v;++T; go(u,2,n)d[u]=G(1,u),e[u]=g[1][u];go(i,2,n){v=1;
go(u,2,n)if(vis[u]!=T&&d[u]<d[v])v=u;vis[v]=T;C+=e[v].cost;
go(u,2,n)if(vis[u]!=T&&G(v,u)<d[u])d[u]=G(v,u),e[u]=g[v][u];D+=e[v].len;} r2=C/D;
} int main()
{
while(scanf("%d",&n),n)
{
go(i,1,n)scanf("%d%d%d",x+i,y+i,h+i);
go(i,1,n)go(j,1,n)g[i][j]=(E){Abs(h[i]-h[j]),Dis(i,j)};
r1=r2=0;while(Prim(),Abs(r1-r2)>1e-5)r1=r2;printf("%.3f\n",r1);
}
return 0;
}//Paul_Guderian

And every young mammal has multitudinous opportunities.————Judy·Hopps

【POJ 2728 Desert King】的更多相关文章

  1. poj 2728 Desert King (最小比例生成树)

    http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissio ...

  2. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  3. poj 2728 Desert King (最优比率生成树)

    Desert King http://poj.org/problem?id=2728 Time Limit: 3000MS   Memory Limit: 65536K       Descripti ...

  4. POJ 2728 Desert King(最优比例生成树 二分 | Dinkelbach迭代法)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25310   Accepted: 7022 Desc ...

  5. POJ 2728 Desert King (01分数规划)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions:29775   Accepted: 8192 Descr ...

  6. POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)

    [题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...

  7. POJ 2728 Desert King

    Description David the Great has just become the king of a desert country. To win the respect of his ...

  8. POJ 2728 Desert King(最优比率生成树 01分数规划)

    http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...

  9. POJ 2728 Desert King | 01分数规划

    题目: http://poj.org/problem?id=2728 题解: 二分比率,然后每条边边权变成w-mid*dis,用prim跑最小生成树就行 #include<cstdio> ...

随机推荐

  1. Win10下安装zookeeper

    Win10下安装zookeeper 注册中心zookeeper的安装 0.去Apache官网下载zookeeper http://zookeeper.apache.org/ 2.找到解压路径的conf ...

  2. spring-传统AOP

    Spring传统AOP AOP的增强类型 AOP联盟定义了Advice(org.aopalliance.aop.Interface.Advice) 五类(目标类方法的连接点): 1.  前置通知(or ...

  3. Q&A - Nginx与Tomcat的区别?

    web上的server都叫web server,但是大家分工也有不同的. nginx常用做静态内容服务和代理服务器(不是你FQ那个代理),直面外来请求转发给后面的应用服务(tomcat,django什 ...

  4. 【Effective C++ 读书笔记】条款02: 尽量以 const, enum, inline 替换 #define

    条款02: 尽量以 const, enum, inline 替换 #define 这个条款或许可以改为“宁可以编译器替换预处理器”. 编译过程: .c文件--预处理-->.i文件--编译--&g ...

  5. python如果想输出原格式的内容,可以加''' ''',占位符使用方式

    print('我考了%d分'%20) msg=''' ---------info of %s----------- name: %s age: %d #字符串不能放到%d处 job: %s salar ...

  6. jdk1.8源码学习笔记

    前言: 前一段时间开始学习了一些基本的数据结构和算法,算是弥补了这方面的知识短板,但是仅仅是对一些算法的了解,目前工作当中也并没有应用到这些,因此希望通过结合实际例子来学习,巩固之前学到的内容,思前想 ...

  7. [学习笔记]CSS选择器

    CSS语法结构 selector {     property1 : value;     property2 : value; } 如果包含多个属性,那么属性每个属性的结尾需要有一个分号.如果属性的 ...

  8. Android面试收集录 Android入门

    1.Android的特点有哪些? 编程语言是Java或Kotlin,Android中的Java字节码是允许在Dalvik虚拟机上的 支持4大组件 Android内置了WebKit核心的浏览器,支持H5 ...

  9. PHP代码审计5-实战漏洞挖掘-cms后台登录绕过

    cms后台登录绕过 练习源码:[来源:源码下载](数据库配置信息有误,interesting) 注:需进行安装 1.创建数据库 2.设置账号密码,连接数据库 3.1 正常登录后台,抓包分析数据提交位置 ...

  10. IAR配置ICF到项目的实现方法

    以STM8为例: 将项目使用的MCU型号的icf文件拷贝到项目里面,icf一般放在 C:\Program Files\IAR Systems\Embedded Workbench 6.5\stm8\c ...