hdu 1007 Quoit Design (最近点对问题)
Quoit Design
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 25335 Accepted Submission(s): 6716
In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.
Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.
0 0
1 1
2
1 1
1 1
3
-1.5 0
0 0
0 1.5
0
0.00
0.75
//1468MS 2288K 1378 B G++
/* 题意;
给出n个点,求最近的两个点的距离的一般 最近点对:
要用到分治的思想做,是时间复杂度为O(nlgn),直接求会超时
最近点对问题在很多算法书和资料上都有讲到,主要思想是分治。 注意一点: 用C的 qsort排序一直TLE,表示有点无力.. */
#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<math.h>
#define N 100005
using namespace std;
struct node{
double x,y;
}p[N];
int a[N];
int n;
double cmpx(node a,node b)
{
return a.x<b.x;
}
double cmpy(int a,int b)
{
return p[a].y<p[b].y;
}
inline double Max(double a,double b)
{
return a>b?a:b;
}
inline double Min(double a,double b)
{
return a<b?a:b;
}
inline double Dis(node a,node b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double find(int l,int r)
{
if(l==r) return 0x7ffffff;
if(r==l+) return Dis(p[l],p[r]);
if(r==l+) return Min(Dis(p[l],p[r]),Min(Dis(p[l],p[l+]),Dis(p[l+],p[r])));
int mid=(l+r)>>;
double d=Min(find(l,mid),find(mid+,r));
int cnt=;
for(int i=l;i<=r;i++){
if(p[i].x>=p[mid].x-d && p[i].x<=p[mid].x+d)
a[cnt++]=i;
}
sort(a,a+cnt,cmpy);
for(int i=;i<cnt;i++){
for(int j=i+;j<cnt;j++){
if(p[a[j]].y-p[a[i]].y>=d) break;
d=Min(d,Dis(p[a[i]],p[a[j]]));
}
}
return d;
}
int main(void)
{
while(scanf("%d",&n)!=EOF)
{
if(n==) break;
for(int i=;i<n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
sort(p,p+n,cmpx);
printf("%.2lf\n",find(,n-)/);
}
return ;
}
hdu 1007 Quoit Design (最近点对问题)的更多相关文章
- HDU 1007 Quoit Design最近点对( 分治法)
题意: 给出平面上的n个点,问任意点对之间的最短距离是多少? 思路: 先将所有点按照x坐标排序,用二分法将n个点一分为二个部分,递归下去直到剩下两或一个点.对于一个部分,左右部分的答案分别都知道,那么 ...
- HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- HDU 1007 Quoit Design【计算几何/分治/最近点对】
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- hdu 1007 Quoit Design 分治求最近点对
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 1007 Quoit Design(二分+浮点数精度控制)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- 杭电OJ——1007 Quoit Design(最近点对问题)
Quoit Design Problem Description Have you ever played quoit in a playground? Quoit is a game in whic ...
- HDU 1007 Quoit Design 平面内最近点对
http://acm.hdu.edu.cn/showproblem.php?pid=1007 上半年在人人上看到过这个题,当时就知道用分治但是没有仔细想... 今年多校又出了这个...于是学习了一下平 ...
- HDU 1007 Quoit Design(计算几何の最近点对)
Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...
- hdu 1007 Quoit Design(分治法求最近点对)
大致题意:给N个点,求最近点对的距离 d :输出:r = d/2. // Time 2093 ms; Memory 1812 K #include<iostream> #include&l ...
随机推荐
- 一篇RxJava友好的文章(一)
转载请标明出处: http://blog.csdn.net/forezp/article/details/52886700 本文出自方志朋的博客 Rxjava在目前的开发中已经是如火如荼,非常的流行, ...
- pod 指令无效
到了新公司,配置pod,死活找不到pod指令,用了很多方法之后,找到了解决办法 sudo vim .bash_profile 然后添加 export PATH=/usr/local/bin:$PATH ...
- django+xadmin在线教育平台(十)
剩余app model注册 courses注册 新建courses/adminx.py: # encoding: utf-8 __author__ = 'mtianyan' __date__ = '2 ...
- 浅谈PHP中的数组和JS中的数组
最近在做前后端对接的时候,遇到一个问题,前端要求返回的数据格式是左边的,但是我通过json_encode返回到的数据格式是右边的 注意:数据格式从"[]"(数组)变成了&quo ...
- XStream 工具类 [ XmlUtil ]
pom.xml <dependency> <groupId>com.thoughtworks.xstream</groupId> <artifactId> ...
- python文件操作练习之文件备份
文件备份 ## 文件备份 # 打开文件 def backup(file1, file2): with open(file1, 'rb') as f1,\ open(file2, 'wb') as f2 ...
- 进程、线程、协程和GIL(二)
上一篇博客讲了进程.线程.协程和GIL的基本概念,这篇我们来说说在以下三点: 1> python中使用threading库来创建线程的两种方式 2> 使用Event对消来判断线程是否已启动 ...
- 关于修改zeppelin的代码显示
最近我在修改zeppelin(0.7版本)的源码相关的知识,目前做的工作是修改zeppelin的代码,为了让zeppelin可以可以在页面中显示数据集,并且在其数据库中存储式真实的路径1.如果我们要运 ...
- Ubuntu下配置LAMP + PhpStorm
本文仅作为一个记录,以下配置在Ubuntu 14.10 64-bit上验证通过. 安装Apache 2:sudo apt-get install apache2 安装成功能够后,通过浏览器访问loca ...
- 16,Flask-Migrate
终于到了Flask-Migrate,之前在学习Flask-SQLAlchemy的时候,Flask支持 makemigration / migrate 吗? 答案在这里该诉你,如果你同时拥有两个三方组件 ...