51nod1043(数位dp)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1043
题意:中文题诶~
思路:数位dp
我们用dp[i][j]来存储长度为2*i且一半和为j的所有情况(包括前导0的情况),为了方便我们现在只讨论其一半的和的情况,因为如果包括前导0的话其两边的情况是一样的;
我们假设再长度为i-1的数字最前面加1位数字k,0<=k<=9(这位数字加在哪里并不影响答案,因为我们在计算i-1长度的时候已经计算了所有组合情况,交换顺序的两种情况都是所有情况里面的情况),加k=0就相当于加了一个前导0,那么我们不难想到动态转移方程式为:
dp[i][j]=∑dp[i-1][j-k] (0<=k<=9)
去前导0为dp[i][j]-dp[i-1][j];
那么对于长度为2*i和为j的组合情况为:dp[i][j]*(dp[i-1][j]) (前部分要考虑前导0,后部分不用考虑);
对于我们要求的答案,直接累加就好了啦.
代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std; const int mod=1e9+;
const int MAXN=;
ll dp[MAXN][MAXN*]; //***dp[i][j]从存储长度为2*i一半和为j的情况数 int main(void){
ll ans=;
int n;
cin >> n;
dp[][]=; //***一开始计算时要把所有前导0都算进去
for(int i=; i<=n; i++){
for(int j=; j<=i*; j++){
for(int k=; k<=; k++){
if(j>=k){
dp[i][j]=(dp[i][j]+dp[i-][j-k])%mod;
}else{
break;
}
}
}
}
for(int i=; i<=*n; i++){
ans=(ans+(dp[n][i]-dp[n-][i])*dp[n][i])%mod;
}
cout << ans << endl;
return ;
}
51nod1043(数位dp)的更多相关文章
- 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP
[BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...
- bzoj1026数位dp
基础的数位dp 但是ce了一发,(abs难道不是cmath里的吗?改成bits/stdc++.h就过了) #include <bits/stdc++.h> using namespace ...
- uva12063数位dp
辣鸡军训毁我青春!!! 因为在军训,导致很长时间都只能看书yy题目,而不能溜到机房鏼题 于是在猫大的帮助下我发现这道习题是数位dp 然后想起之前讲dp的时候一直在补作业所以没怎么写,然后就试了试 果然 ...
- HDU2089 不要62[数位DP]
不要62 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- 数位DP GYM 100827 E Hill Number
题目链接 题意:判断小于n的数字中,数位从高到低成上升再下降的趋势的数字的个数 分析:简单的数位DP,保存前一位的数字,注意临界点的处理,都是套路. #include <bits/stdc++. ...
- 数位dp总结
由简单到稍微难点. 从网上搜了10到数位dp的题目,有几道还是很难想到的,前几道基本都是模板题,供入门用. 点开即可看题解. hdu3555 Bomb hdu3652 B-number hdu2089 ...
- 数位DP入门
HDU 2089 不要62 DESC: 问l, r范围内的没有4和相邻62的数有多少个. #include <stdio.h> #include <string.h> #inc ...
- 数位DP之奥义
恩是的没错数位DP的奥义就是一个简练的dfs模板 int dfs(int position, int condition, bool boundary) { ) return (condition ? ...
- 浅谈数位DP
在了解数位dp之前,先来看一个问题: 例1.求a~b中不包含49的数的个数. 0 < a.b < 2*10^9 注意到n的数据范围非常大,暴力求解是不可能的,考虑dp,如果直接记录下数字, ...
随机推荐
- Idea_学习_03_IDEA中使自定义类型的文件进行代码高亮识别
如果你只是想用xml的编辑模式来编辑*.screen文件的话,可以在 Settings->Editor->File Types 中,在Recognized File Types选中XML, ...
- linux命令学习笔记(57):ss命令
ss是Socket Statistics的缩写.顾名思义,ss命令可以用来获取socket统计信息,它可以显示和netstat 类似的内容.但ss的优势在于它能够显示更多更详细的有关TCP和连接状态的 ...
- 【leetcode刷题笔记】N-Queens
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...
- redisCheckMem脚本
最近维护的redis cluster需要扫描每个实例的内存使用率,首先我们需要获取实例已经使用的内存,获取实例的最大内存配额,两个值相比就能获取到内存使用比例. 实例的最大内存获取方法: $REDIS ...
- bzoj 2300: [HAOI2011]防线修建 凸包
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=2300 题解 这道题让我们维护一个支持动态删除点的上凸壳 并且告诉了我们三个一定不会被删除 ...
- docker-建立私有registry
我们知道可以使用hub.docker.com作为我们公共或者私有的registry.但由于服务器在国外的原因,网速会非常的慢.所以我们在利用docker开发构建容器服务时,我们希望能够建立自己的私有r ...
- CentOS 7关闭firewalld启用iptables
在CentOS7中,有很多CentOS 6中的常用服务发生了变化. 其中iptables是其中比较大的一个.防火墙iptables被firewalld取代. 本文将介绍,如果采用systemctl关闭 ...
- 机器学习:scikit-learn中算法的调用、封装并使用自己所写的算法
一.scikit-learn库中的kNN算法 scikit-learn库中,所有机器学习算法都是以面向对象的形式进行包装的: 所有scikit-learn库中机器学习算法的使用过程:调用.实例化.fi ...
- ceph学习之CRUSH
CRUSH的全称是Controlled Replication Under Scalable Hashing,是ceph数据存储的分布式选择算法,也是ceph存储引擎的核心.在之前的博客里介绍过,ce ...
- Lua虚拟机初始化
转自:http://www.cnblogs.com/ringofthec/archive/2010/11/09/lua_State.html 1. 创建lua虚拟机 lua_State *lua_ne ...