【模板时间】◆模板·I◆ 倍增计算LCA
【模板·I】LCA(倍增版)
既然是一篇重点在于介绍、分析一个模板的Blog,作者将主要分析其原理,可能会比较无趣……(提供C++模板)
另外,给reader们介绍另外一篇非常不错的Blog(我就是从那篇博客开始自学LCA的):+LCA-by 殇雪+
一、原理
LCA即最近公共祖先,一般用LCA(u,v)表示u、v的最近公共祖先。举个例子:

(Tab:以下“树”均指有根树)由于在树中,除根节点的每个节点都有且仅有一个父节点,我们很容易得到一个结论——u,v的最近公共祖先的任意祖先一定也是u,v的公共祖先。假设x是u,v的公共祖先,LCA(u,v)≤x。倍增求LCA的基础是 2进制能够表示任意整数 。所以令u,v的最近公共祖先与u、v分别距离lu、lv,并可以将其表示成2进制。
设 dfu[v][k] 表示 节点v向上寻找到的第2k代祖先(比如之前的图中,dfu[4][1]=1),dep[v] 表示 v的深度(根节点的深度依照题目定为1或0)。
不妨设 dep[v]>dep[u] 。首先要使u、v同层,即dep[u]=dep[v],可以通过将v上移到它的 dep[u]-dep[v] 代祖先来实现,再将dep[v]-dep[u]转为2进制,就可以通过dfu实现。
u、v同层后,设它们距离最近公共祖先l个单位。同样,l也可以表示为2进制,也就可以通过dfu解决。
由于每一次移动都是在2进制下进行,求LCA的复杂度大约可看为 O(log2n)。
二、算法实现
①大致步骤:
初始化: DFS初始化每个点v的dep[v]以及直接父亲(dfu[v][0]);
递推计算全部dfu;
计算LCA: 上移u、v至同一层;
同时上移u、v找最近公共祖先;
②初始化:
DFS可以通过参数下传父亲节点以及节点深度(eg:void DFS(int u,int fa,int depth))。(建议用邻接表的方式)遍历每一个儿子,同时初始化。
根据dfu定义,dfu[v][i+1]表示v的第2i+1代祖先,也就是第(2i+2i)代祖先。则可以先找到v的第2i代祖先u,再找到u的第2i代祖先。递推式如下:
dfu[v][i+1]=dfu[dfu[v][i]][i]; //dfu[v][i]表示v的第2i代祖先
由于递推过程中,dfu[v][i]已经计算出来了,我们就可以从dfu[v][0]出发推出所有dfu。
③计算LCA(u,v)
为了方便计算,先保证dep[v]>dep[u]。
要将u、v移动到同层,即把v上移(dep[u]-dep[v])层。由于我们知道v的2k代祖先,我们可以把dep[u]-dep[v]拆分成 2a1+2a2+...+2ap(C++实现可以判断 (dep[v]-dep[u])>>i&1,即2进制的(dep[v]-dep[u])的第i位是否为1),按次上移即可。
如果此时u=v,则说明最初u是v的祖先,则LCA(u,v)=u。
除开上述u=v的情况。由于 LCA(u,v) 的祖先一定也是u,v的公共祖先,所以我们可以将u、v上移到LCA(u,v)的下一层,即u,v的父亲为LCA(u,v)。从高到低枚举i(i最大为ceil(log2(n)),即退化为链后根与叶子节点),如果dfu[u][i]==dfu[v][i],则说明dfu[u][i]已经是LCA(u,v)或层数已经高于LCA(u,v)了,由于无法直接判断是否是LCA(u,v),我们就可以选择不上移(目标是将u,v转移到LCA(u,v)的下一层);如果dfu[u][i]!=dfu[v][i],则说明还没有到LCA(u,v),就可以上移。最后就可以移动到LCA(u,v)的下一层。
其实上述操作无非是令u,v到LCA(u,v)的距离为S,将S-1表示为2进制,再通过dfu顺次上移。最后得到dfu[u][0](或者dfu[v][0])就是LCA(u,v)了。
三、C++代码
初始化:
void DFS(int u,int fa,int depth)
{
dfu[u][]=fa;dep[u]=depth; //更新v的父节点以及深度
for(int i=;i<lnk[u].size();i++) //lnk是vector的邻接表
DFS(lnk[u][i],u,depth+);
}
void Prepare()
{
DFS(,-,); //先处理出节点的深度(dep)和直接祖先(dfu[0])
for(int i=;i+<;i++)
for(int j=;j<n;j++)
if(dfu[j][i]<) dfu[j][i+]=-; //上移位置已经超过根节点
else dfu[j][i+]=dfu[dfu[j][i]][i];
}
计算LCA:
int LCA(int u,int v)
{
if(dep[u]>dep[v]) swap(u,v); //保证u不高于v
for(int i=;i<;i++) //拆分二进制
if(((dep[v]-dep[u])>>i)&) //上移到同一层
v=dfu[v][i];
if(u==v) return u; //u最初是v的根节点
for(int i=;i>=;i--)
if(dfu[u][i]!=dfu[v][i])
u=dfu[u][i],v=dfu[v][i];
return dfu[u][];
}
The End
Thanks for reading!
- Lucky_Glass
(Tab:如果我有没讲清楚的地方可以直接在邮箱lucky_glass@foxmail.com email我,在周末我会尽量解答并完善博客~)
【模板时间】◆模板·I◆ 倍增计算LCA的更多相关文章
- 【原创】洛谷 LUOGU P3379 【模板】最近公共祖先(LCA) -> 倍增
P3379 [模板]最近公共祖先(LCA) 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询 ...
- 倍增求lca模板
倍增求lca模板 https://www.luogu.org/problem/show?pid=3379 #include<cstdio> #include<iostream> ...
- 倍增求lca(模板)
定义LCA,最近公共祖先,是指一棵树上两个节点的深度最大的公共祖先.也可以理解为两个节点之间的路径上深度最小的点.我们这里用了倍增的方法求了LCA.我们的基本的思路就是,用dfs遍历求出所有点的深度. ...
- 洛谷P3379 【模板】最近公共祖先(LCA)(dfs序+倍增)
P3379 [模板]最近公共祖先(LCA) 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询 ...
- 倍增求LCA学习笔记(洛谷 P3379 【模板】最近公共祖先(LCA))
倍增求\(LCA\) 倍增基础 从字面意思理解,倍增就是"成倍增长". 一般地,此处的增长并非线性地翻倍,而是在预处理时处理长度为\(2^n(n\in \mathbb{N}^+)\ ...
- 「LuoguP3379」 【模板】最近公共祖先(LCA)
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 洛谷P3379 【模板】最近公共祖先(LCA)
P3379 [模板]最近公共祖先(LCA) 152通过 532提交 题目提供者HansBug 标签 难度普及+/提高 提交 讨论 题解 最新讨论 为什么还是超时.... 倍增怎么70!!题解好像有 ...
- 洛谷——P3379 【模板】最近公共祖先(LCA)
P3379 [模板]最近公共祖先(LCA) 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询 ...
- luogo p3379 【模板】最近公共祖先(LCA)
[模板]最近公共祖先(LCA) 题意 给一个树,然后多次询问(a,b)的LCA 模板(主要参考一些大佬的模板) #include<bits/stdc++.h> //自己的2点:树的邻接链表 ...
随机推荐
- 用一层for循环初始化三维数组
][][]; ; i < * * ; i++) { a[i / ][(i / ) % ][i % ] = i; printf(, (i / ) % , i % ); // printf(&quo ...
- telnet不能用,提示:-bash: telnet: command not found
1.[root@localhost ~]# telnet bash: telnet: command not found 2. 查询了是否安装Telnet包,结果如下: [root@localhos ...
- 随机练习:C#实现维吉尼亚加密与解密(解密前提为已知密匙)
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- Java类的初始化顺序 (静态变量、静态初始化块、变量、初始...
很有意思的一篇文章 1.没有继承 静态变量->静态初始化块->变量->变量初始化块->构造方法 2.有继承的情况 父类静态变量->父类静态初始化块->子类静态变量- ...
- jQuery中的节点操作(一)
html代码如下 <p>Dom操作练习</p> jQuery插入节点 $("p").append("武汉php"); //向每个匹配的元 ...
- 什么是MongoDb
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的.他支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型.Mo ...
- The fifth day
All men cannot be first . 今日单词: first(形容词):第一的:基本的:最早的:(副词):第一:首先 翻译:不可能人人都是第一名. <Only Love>-- ...
- IntelliJ、ReSharper 4折 加入慧都“惊喜惠”
慧都2013岁末回馈惊喜不断!著名的软件开发公司JetBrains旗下所有产品加入"惊喜惠"活动环节, JAVA IDE——IntelliJ IDEA,.NET效率工具集——ReS ...
- MVC 默认路由 Areas
1.使用重名controller 在asp.net mvc2以后的版本里面,有了area(区域的概念),这为我们开发中提供了不少方便的地方,但是很不凑巧,若是存在多个重名的controller就会发生 ...
- 类型信息(RTTI和反射)——反射
运行时类型信息可以让你在程序运行时发现和使用类型信息. 在Java中运行时识别对象和类的信息有两种方式:传统的RTTI,以及反射.下面就来说说反射. 重点说说通过反射获取方法以及调用方法,即类方法提取 ...