结果和dp没有一点关系……

30分算法:设$f_{i, j}$表示已经选了$i$个并且有$j$个是白色的状态数,转移显然,最后答案就是$f_{n + m, m}$,时间复杂度$O(n^{2})$。

100分算法:

大神讲的好

把已经选了的$0$的个数和$1$的个数和看作$x$轴,已经选了个$1$的个数和$0$的个数的差看作$y$轴,就相当于每一步可以向右上或者是右下走一步,最后要到达$(n + m, n - m)$的方案数。

可以发现就相当于在$n + m$步中选出$m$步向右下走的方案数$\binom{n + m}{m}$。

考虑一下限制条件,其实就相当于不经过$y = -1$这条线。根据对称性,从$(0, 0)$开始经过$y = -1$到达$(n + m, n - m)$的方案数就相当于从$(0, -2)$出发,相当于在$n + m$步中选择$m - 1$步中向下走,所以不合法的方案数有$\binom{n + m}{m - 1}$个。

最后的答案就是两个组合数相减。

其中阶乘和阶乘的逆元可以$O(n)$预处理。

时间复杂度$O(n)$。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 2e6 + ;
const ll P = 20100403LL; int n, m;
ll fac[N], inv[N]; inline ll pow(ll a, ll b) {
ll res = 1LL;
for(; b > ; b >>= ) {
if(b & ) res = res * a % P;
a = a * a % P;
}
return res;
} inline ll getC(int a, int b) {
return fac[a] * inv[b] % P * inv[a - b] % P;
} int main() {
scanf("%d%d", &n, &m); fac[] = 1LL;
for(int i = ; i <= n + m; i++) fac[i] = 1LL * i * fac[i - ] % P;
inv[n + m] = pow(fac[n + m], P - );
for(int i = n + m - ; i >= ; i--) inv[i] = 1LL * inv[i + ] * (i + ) % P; printf("%lld\n", (getC(n + m, m) - getC(n + m, m - ) + P) % P);
return ;
}

Luogu 1641 [SCOI2010]生成字符串的更多相关文章

  1. Luogu 1641[SCOI2010]生成字符串 - 卡特兰数

    Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...

  2. BZOJ1856或洛谷1641 [SCOI2010]生成字符串

    BZOJ原题链接 洛谷原题链接 可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标. 向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示 ...

  3. 洛谷 1641 [SCOI2010]生成字符串

    题目戳这里 一句话题意 求\(C_{m+n}^{m}\)-\(C_{m+n}^{m-1}\) Solution 巨说这个题目很水 标签居然还有字符串? 但是我还不很会用逆元真的太菜了,还好此题模数P为 ...

  4. luogu P1641 [SCOI2010]生成字符串

    传送门 代码极短 \(O(n^2)\)dp是设\(f_{i,j,k}\)表示前\(i\)位,放了\(j\)个1,后面还可以接着放\(k\)个0的方案,转移的话,如果放0,\(k\)就要减1,反之放了1 ...

  5. Luogu P1641 [SCOI2010]生成字符串 组合数学

    神仙.... 当时以为是,$x$代表$1$,$y$代表$0$,所以不能过$y=x$的路径数...结果不会... 然后康题解...ヾ(。`Д´。)竟然向右上是$1$,向右下是$0$.... 所以现在就是 ...

  6. [SCOI2010]生成字符串 题解(卡特兰数的扩展)

    [SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...

  7. P1641 [SCOI2010]生成字符串

    P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...

  8. [SCOI2010]生成字符串

    题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...

  9. BZOJ1856 [SCOI2010]生成字符串 【组合数】

    题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求 ...

随机推荐

  1. uva11292 Dragon of Loowater(排序后贪心)

    #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #inc ...

  2. python使用 db.select 返回的数据只能遍历一次

    python中通过find从mongo中查出的数据,或者通过select返回的数据,其实返回的是游标,当你进行便利一次之后,游标指向最后, 所以当你再一次进行便利时,便出现数据为空的现象. 解决办法: ...

  3. mount: error mounting /dev/root on /sysroot as ext3: Invalid argument

    /************************************************************************ * mount: error mounting /d ...

  4. ugui Event.current.mousePosition获取的坐标原点在左上角

    脚本里使用OnGUI(),在鼠标按下时出发EventType.MouseDown事件,此时如果观察Event.current.mousePosition的坐标原点时左上角,即鼠标按下的点越靠近左上角, ...

  5. BZOJ - 2243 染色 (树链剖分+线段树+区间合并)

    题目链接 线段树维护区间连续段个数即可.设lc为区间左端点颜色,rc为区间右端点颜色,则合并两区间的时候,如果左区间右端点和右区间左端点颜色相同,则连续段个数-1. 在树链上的区间合并可以定义一个结构 ...

  6. css3 flex布局/grid布局

    1.CSS3 Flexbox 布局完全指南(图解 Flexbox 布局详细教程) 2.CSS Grid 布局完全指南(图解 Grid 详细教程)

  7. ugui在运行时改变RectTransform的大小

    http://blog.csdn.net/BeiFuDeNvWang/article/details/50838266 在代码中动态改变RectTransform大小的方法如下所示: 1:直接对siz ...

  8. Day2-VIM(六): 恢复

    恢复在VIM里比较简单,不过想要具体恢复到某个时间段很难 就我的经验而言,有时候使用恢复还不如删了重写 这里我们来讲讲恢复.撤销和重复命令的使用 u 撤消上次命令 U 恢复整行 ctrl+r 重做 . ...

  9. 一个WCF使用TCP协议进行通协的例子

    在解决方案资源管理器中,需要添加两个引用:System.ServiceModel和WCFService.然后双击窗口,在Form_Load事件中编写如下代码: 添加一个应用程序配置文件App.Conf ...

  10. 机器学习:评价分类结果(ROC 曲线)

    一.基础理解 1)定义 ROC(Receiver Operation Characteristic Curve) 定义:描述 TPR 和 FPR 之间的关系: 功能:应用于比较两个模型的优劣: 模型不 ...