King Arthur's Birthday Celebration
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 3575   Accepted: 1130

Description

King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. The luxurious celebration will start on his birthday and King Arthur decides to let fate tell when to stop it. Every day he will toss a coin which has probability p that it comes up heads and 1-p up tails. The celebration will be on going until the coin has come up heads for K times. Moreover, the king also decides to spend 1 thousand coins on the F[i]rst day's celebration, 3 thousand coins on the second day's, 5 thousand coins on the third day's ... The cost of next day will always be 2 thousand coins more than the previous one's. Can you tell the minister how many days the celebration is expected to last and how many coins the celebration is expected to cost?

Input

The input consists of several test cases. 
For every case, there is a line with an integer K ( 0 < K ≤ 1000 ) and a real number p (0.1 ≤ p ≤ 1). 
Input ends with a single zero.

Output

For each case, print two number -- the expected number of days and the expected number of coins (in thousand), with the fraction rounded to 3 decimal places.

Sample Input

1 1
1 0.5
0

Sample Output

1.000 1.000
2.000 6.000

Source

题意: 有一个富豪,他决定每天撒钱,并且抛硬币,第一天1块钱,第二天3块钱,第三天5块,直到他抛到硬币向上的数量为K。 求天数期望和钱期望。

思路

C[i]表示掷出了i枚正面朝上的硬币的期望次数,F[i]表示掷出了i枚正面朝上的硬币的期望费用。

C[i] = pC[i]-1 + (1-p)C[i] + 1   1表示抛出了第i枚硬币用去1次,如果是正面那么要到i枚正面硬币只需要再抛出C[i]-1次,如果是反面还需要再抛C[i]次。

F[i] = p(F[i]-1 + 2 * (C[i]-1+1) -1) + (1-p)(F[i] + 2 * (C[i]+1) -1)    第i枚硬币抛出,如果是正面,那么现在抛出的这枚就是第C[i]-1 + 1 枚,如果是反面,现在抛出的这枚就是第C[i] + 1 枚。

PS:C[i],F[i]的转移方程都需要移项。

代码:

 #include"bits/stdc++.h"

 #define db double
#define ll long long
#define vl vector<ll>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define rep(i, n) for(int i=0;i<n;i++)
using namespace std;
const int N = 1e6 + ;
const int mod = 1e9 + ;
const int MOD = ;
const db PI = acos(-1.0);
const db eps = 1e-;
const ll INF = 0x3fffffffffffffff; db c[N];
db f[N];
int n;
db p;
int main()
{
while(scanf("%d%lf",&n,&p)==&&n)
{
c[]=f[]=;
for(int i=;i<=n;i++) c[i]=c[i-]+/p;
for(int i=;i<=n;i++) f[i]=(p*(f[i-]+*(c[i-]+)-)+(-p)*(*(c[i]+)-))/p;
printf("%.3f %.3f\n",c[n],f[n]);
}
return ;
}

POJ3682 概率DP的更多相关文章

  1. Codeforces 28C [概率DP]

    /* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...

  2. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  3. POJ 2096 Collecting Bugs (概率DP)

    题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...

  4. POJ 2151 Check the difficulty of problems (概率DP)

    题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...

  5. 概率DP light oj 1030

    t组数据 n块黄金 到这里就捡起来 出发点1 到n结束  点+位置>n 重掷一次 dp[i] 代表到这里的概率 dp[i]=(dp[i-1]+dp[i-2]... )/6  如果满6个的话 否则 ...

  6. hdu 4050 2011北京赛区网络赛K 概率dp ***

    题目:给出1-n连续的方格,从0开始,每一个格子有4个状态,左右脚交替,向右跳,而且每一步的步长必须在给定的区间之内.当跳出n个格子或者没有格子可以跳的时候就结束了,求出游戏的期望步数 0:表示不能到 ...

  7. [转]概率DP总结 by kuangbin

    概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/20 ...

  8. SGU 422 Fast Typing(概率DP)

    题目大意 某人在打字机上打一个字符串,给出了他打每个字符出错的概率 q[i]. 打一个字符需要单位1的时间,删除一个字符也需要单位1的时间.在任意时刻,他可以花 t 的时间检查整个打出来的字符串,并且 ...

  9. HDU 4050 wolf5x(动态规划-概率DP)

    wolf5x Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

随机推荐

  1. git 提交各种情况下的处理方式

    自己总结: 01.若在提交过程中有冲突,解决冲突后,git add . git rebase —continue git push for   02.git rebase vs git merge g ...

  2. oracle笔记2-多表查询和子查询

    --查询出当前用户下的所有表 select table_name from user_tables; --执行顺序原则:  from  where group by  having   select  ...

  3. 被遗忘的设计模式——空对象模式(Null Object Pattern)

    GoF(四人帮)那本<设计模式 可复用面向对象软件的基础>可谓是设计模式方面的经典之作,其中介绍的23种设计模式, 也可谓是经典中的经典.但是,设计模式的种类绝不仅仅是这23种,除此之外还 ...

  4. Spring Boot项目Circular view path问题解决

    使用Spring Boot创建Spring MVC项目,访问url请求出现问题:Circular view path 1.问题描述 控制台打印: javax.servlet.ServletExcept ...

  5. 翻译-ExcelDNA开发文档-首页

    转载自个人主页 前言 ExcelDNA是一名国际友人开发的开源框架,文档全是英文文档,当时看的时候非常吃力,现在将英文文档翻译过来,为的是让自己加深印象以及自己以后看的时候能不用这么吃力. 介绍 Ex ...

  6. php中增删改查以及返回结果(一)

    虽然毕业后找的第一份正式的工作并不那么令人满意,但是在度过最初的迷茫期后,自己还是决定成为一个程序猿. 最近也是利用上班偶尔闲下来的时间,开始看书,撸代码,写一些小程序. 这两个礼拜主要的写的都是有关 ...

  7. MYSQL:随机抽取一条数据库记录

    今天我们要实现从随机抽取一条数据库记录的功能,并且抽取出来的数据记录不能重复: 1.首先我们看文章表中的数据: 2.实现功能代码如下: 1 /** * 获取随机的N篇文篇 * @param int $ ...

  8. 动态控制C4C UI元素的显示和隐藏

    C4C UI上UI元素的显示和隐藏可以通过Key User在Adaptation模式里通过编辑一些简单的rule去控制,诸如这种格式: if ( logic expression = true ) t ...

  9. 816 Ambiguous Coordinates (many cases problem)

    https://www.cnblogs.com/Java3y/p/8846955.html -- link of the problem 816 IDEA: check the dot and int ...

  10. POJ-1840 Eqs---二分

    题目链接: https://vjudge.net/problem/POJ-1840 题目大意: 给出一个5元3次方程,输入其5个系数,求它的解的个数 其中系数 ai∈[-50,50]  自变量xi∈[ ...