Codeforces Round #460 (Div. 2).E 费马小定理+中国剩余定理
3 seconds
256 megabytes
standard input
standard output
Given an integer x. Your task is to find out how many positive integers n (1 ≤ n ≤ x) satisfy
where a, b, p are all known constants.
The only line contains four integers a, b, p, x (2 ≤ p ≤ 106 + 3, 1 ≤ a, b < p, 1 ≤ x ≤ 1012). It is guaranteed that p is a prime.
Print a single integer: the number of possible answers n.
2 3 5 8
2
4 6 7 13
1
233 233 10007 1
1
In the first sample, we can see that n = 2 and n = 8 are possible answers.
题意:给出a, b, p, x,求有多少个n满足:n*a^n%p==b(n<=x)
思路:先要知道一个很简单的性质:a^n%p=(a%p)^(n%p-1)%p=a^(n%p-1),即a^n仅有p-1种结果。
①暴力枚举a^i%p (i从0到p-1)算出每个余数,可以得到式子n*a^i%p==b
②对于每个a^i,用逆元求出c,n%p = c= b*inv(a^i)%p
③则n%(p-1)==i 且n%p==c,最小的n可以用CRT求出,n的周期是P=p*(p-1).
代码:
//#include "bits/stdc++.h"
#include "cstdio"
#include "map"
#include "set"
#include "cmath"
#include "queue"
#include "vector"
#include "string"
#include "cstring"
#include "time.h"
#include "iostream"
#include "stdlib.h"
#include "algorithm"
#define db double
#define ll long long
//#define vec vector<ll>
#define Mt vector<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define inf 0x3f3f3f3f
#define rep(i, x, y) for(int i=x;i<=y;i++)
const int N = 1e6 + ;
const int mod = 1e9 + ;
const int MOD = mod - ;
const db eps = 1e-;
const db PI = acos(-1.0);
using namespace std;
ll a,b,p,x;
ll m[],f[];
ll exgcd(ll a, ll b, ll &x, ll &y)
{
ll d;
//if (a == 0 && b == 0) return -1;
if (b == )
{
x = ;
y = ;
return a;
}
d = exgcd(b, a%b, y, x);
y -= a / b * x;
return d;
} ll inv(ll a, ll MOD)
{
ll x, y, d;
d = exgcd(a, MOD, x, y);
if (d == )
return (x % MOD + MOD) % MOD;
// else return -1;
}
ll china(ll *f, ll *m){
ll M = , ret = ;
for(int i = ; i < ; i ++) M *= m[i];
for(int i = ; i < ; i ++){
ll w = M / m[i];
ret = (ret + w * inv(w, m[i]) * f[i]) % M;
}
return (ret + M) % M;
}
ll qpow(ll x,ll n)
{
ll ans=;
x%=p;
while(n){
if(n&) ans=ans*x%p;
x=x*x%p;
n>>=;
}
return ans;
} int main()
{
cl(a),cl(b),cl(p),cl(x);
a%=p;
ll ans=,P=p*(p-);
m[]=p-,m[]=p;
for(int i=;i<p-;i++)
{
f[]=i;
f[]=inv(qpow(a,i),p)*b%p;
ll xx=china(f,m);
ans+=(x-xx+P)/P;
}
pl(ans);
return ;
}
Codeforces Round #460 (Div. 2).E 费马小定理+中国剩余定理的更多相关文章
- Codeforces Round #460 (Div. 2) ABCDE题解
原文链接http://www.cnblogs.com/zhouzhendong/p/8397685.html 2018-02-01 $A$ 题意概括 你要买$m$斤水果,现在有$n$个超市让你选择. ...
- Codeforces Round #460 (Div. 2) E. Congruence Equation (CRT+数论)
题目链接: http://codeforces.com/problemset/problem/919/E 题意: 让你求满足 \(na^n\equiv b \pmod p\) 的 \(n\) 的个数. ...
- Codeforces.919E.Congruence Equation(同余 费马小定理)
题目链接 \(Description\) 给定a,b,x,p,求[1,x]中满足n*a^n ≡b (mod p) 的n的个数.\(1<=a,b<p\), \(p<=1e6+3\), ...
- 【bzoj1951】[Sdoi2010]古代猪文 费马小定理+Lucas定理+中国剩余定理
题目描述 求 $g^{\sum\limits_{k|n}C_{n}^{\frac nk}}\mod 999911659$ 输入 有且仅有一行:两个数N.G,用一个空格分开. 输出 有且仅有一行:一个 ...
- Codeforces Round #460 (Div. 2) 前三题
Problem A:题目传送门 题目大意:给你N家店,每家店有不同的价格卖苹果,ai元bi斤,那么这家的苹果就是ai/bi元一斤,你要买M斤,问最少花多少元. 题解:贪心,找最小的ai/bi. #in ...
- Codeforces Round #460 (Div. 2)
A. Supermarket We often go to supermarkets to buy some fruits or vegetables, and on the tag there pr ...
- Codeforces Round #460 (Div. 2): D. Substring(DAG+DP+判环)
D. Substring time limit per test 3 seconds memory limit per test 256 megabytes input standard input ...
- Codeforces Round #460 (Div. 2)-D. Substring
D. Substring time limit per test3 seconds memory limit per test256 megabytes Problem Description You ...
- Codeforces Round #460 (Div. 2)-C. Seat Arrangements
C. Seat Arrangements time limit per test1 second memory limit per test256 megabytes Problem Descript ...
随机推荐
- XHTML教会我的一些东西-2
不知道写些什么,每次看完视频之后都按照里面的方法把相应的代码写了一遍.感觉问题不大,可能是我没去写那些复杂的代码,没有去思考其他一些新颖的架构. 在自己写代码和看视频的过程中,我明白了,一定要注意每一 ...
- ngnix 反向代理
1 课程目标 掌握nginx+tomcat反向代理的使用方法. 掌握nginx作为负载均衡器的使用方法. 掌握nginx实现web缓存方法. 2 nginx介绍 2.1 ...
- Android基础Activity篇——Intent
1.显式的Intent intent是用来各各活动之间切换的,还可以用来传递参数. 项目还是使用之前创建的ActivityTest项目,这里新建一个活动SecondActivity.java,并且勾选 ...
- python+selenium第一个脚本
#coding=utf-8from selenium import webdriverfrom selenium.webdriver.common.keys import Keysimport tim ...
- gitlab安装详解
官方网站---https://www.gitlab.com.cn/downloads/ 1.选择操作系统 例如:CentOS6.CentOS7.Ubuntu12.04.Ubuntu14.04等,选择相 ...
- word禁止自动编号
在回车.换行时使用 shift + enter
- Altium_Designer-如何放置总线
在绘制原理图时我们避免不了要用到总线,但是在我们使用Altium Designer绘制总线时总是出现一些问题,导致总线无法使用.下面我就来帮助大家绘制出一条的总线,希望能够帮助在这方面摸索的人们. 第 ...
- IOS Post请求(请求服务器)
@interface HMViewController () @property (weak, nonatomic) IBOutlet UITextField *usernameField; @pro ...
- POJ-2503 Babelfish---map或者hash
题目链接: https://vjudge.net/problem/POJ-2503 题目大意: 就像查找一本字典,根据输入的条目和要查询的单词,给出查询结果(每个单词长度不超过10) 解题思路: ma ...
- matlab时间测试
因为想把样本筛选一下,所以简单的分类器先跑了一下,没想到跑完分类器在对样本筛选时的时间大大超过了样本进分类器的时间,这个显然不能达到我要的节省时间目的.于是分析了一下matlab中各个环节的时间成本, ...