一道很有价值的题。



【解析1】欧几里德算法求乘法逆元,前缀和



[Analysis]O(T n log n)。

[Sum]

①int运算。假设会超出界,第一个数前要加上(LL)即类型转换。

②gcd不变的欧几里德定理:能够是加。也能够是减。



[Code]

/**************************************************************
Problem: 2186
User: y20070316
Language: C++
Result: Accepted
Time:6496 ms
Memory:157056 kb
****************************************************************/ #include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std; typedef long long LL;
const int N=10000001; int p[N],v[N],inv[N]; //screen
int pre[N]; //Prefix n!
int cas,r,n,m; //Basic
int x,y; //Exgcd void exgcd(int i,int j)
{
if (!j) {x=1,y=0;return;}
exgcd(j,i%j);
int x_=y,y_=x-(i/j)*y;
x=x_,y=y_;
} int main(void)
{
scanf("%d%d",&cas,&r); for (int i=2;i<N;i++)
{
if (!v[i])
{
p[++p[0]]=i;
exgcd(i,r),inv[i]=x%r;
}
for (int j=1;j<=p[0];j++)
{
if (i*p[j]>=N) break;
v[i*p[j]]=1;
if (i%p[j]==0) break;
}
} pre[0]=1;
for (int i=1;i<N;i++)
pre[i]=(LL)pre[i-1]*i%r; inv[1]=1;
for (int i=2;i<N;i++)
if (!inv[i])
inv[i]=inv[i-1];
else
{
inv[i]=(LL)inv[i]*(i-1)%r;
inv[i]=(LL)inv[i]*inv[i-1]%r;
} for (int cc=1;cc<=cas;cc++)
{
scanf("%d%d",&n,&m);
printf("%d\n",((LL)pre[n]*inv[m]%r+r)%r);
} return 0;
}</span>

【解析2】递推求乘法逆元,前缀和



[Analysis]O(Tn)

性质:关于Mod M作用下i的逆元inv[i]=-(M/i)*inv[M%i]。

证明:

令a=M/i,b=M%i,

∴M=ai+b。

∴inv[i] = -a * inv[b]。

同余式两边同一时候乘上i。得:

i * inv[i]

= -ai * inv[b]

= (b-M) * inv[b]

= b*inv[b]

= 1 (mod M)

∴inv[i]为在Mod M下i的逆元,证毕。

O(n)求法比直接求全部素数的逆元还慢一些...

[Code]

/**************************************************************
Problem: 2186
User: y20070316
Language: C++
Result: Accepted
Time:7700 ms
Memory:196116 kb
****************************************************************/ #include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std; typedef long long LL;
const int N=10000001; int p[N],v[N]; //screen
int inv[N],sinv[N]; //Mutiplicative Inverse
int pre[N]; //Prefix n!
int cas,r,n,m; //Basic int main(void)
{
scanf("%d%d",&cas,&r); for (int i=2;i<N;i++)
{
if (!v[i]) p[++p[0]]=i;
for (int j=1;j<=p[0];j++)
{
if (i*p[j]>=N) break;
v[i*p[j]]=1;
if (i%p[j]==0) break;
}
} pre[0]=1;
for (int i=1;i<N;i++)
pre[i]=(LL)pre[i-1]*i%r; inv[1]=1;
for (int i=2;i<N;i++)
inv[i]=(LL)(r-r/i)*inv[r%i]%r; sinv[1]=1;
for (int i=2;i<N;i++)
{
sinv[i]=sinv[i-1];
if (!v[i])
{
sinv[i]=(LL)sinv[i]*(i-1)%r;
sinv[i]=(LL)sinv[i]*inv[i]%r;
}
} for (int cc=1;cc<=cas;cc++)
{
scanf("%d%d",&n,&m);
printf("%d\n",((LL)pre[n]*sinv[m]%r+r)%r);
} return 0;
}</span>

以下是做这道题时做的一些笔记:

1.阶乘的乘除

①直接计算。

②分解质因数。

假设有取余,用①方便。

假设要写高精度,用②方便。

2、欧拉函数的求法

例:求fai(60)

①分解质因数正规求法

60=2^2 * 3^1 * 5^1。

∴fai(60)=60 * (1-1/2) * (1-1/3) * (1-1/5) = 16。

②依据①的还有一种求法

fai(60)= (1 * 2^1) * (2*3^0) * (4*5^0)= 16。

③积性函数的解法:可结合欧拉筛法达到O(n)求出全部。

fai(60) = fai(2^2) * fai(3^1) * fai(5^1) = 16。

3、乘法逆元(mutiplicative inverse)

(1)什么是乘法逆元?

群G中随意一个元素a,都在G中有唯一的逆元a',s.t. aa'=a'a=e,e为单位元。

例:求4关于1模7的逆元,即求关于X的方程 4X ≡1 (mod 7)。

(2)怎么求乘法逆元?

在求乘法逆元aa'=b(mod c)前,要满足(a,c)=1即(a,c)互质。

①同余方程 --> 不定方程 --> exgcd。

单个。O(log n)。

②欧拉定理

依据欧拉定理,当a与P互质时,a ^ fai(P) = 1 (mod P)。

∴a * a^(fai(P)-1) =1 (mod P)。

在mod P意义下a的乘法逆元a' = a^(fai(P)-1)。

特别的,当P为质数时,a' = a^(P-2)。

单个,O(log fai(P)-1)。

③积性函数

乘法逆元是积性函数,能够线性筛(screen)。

对于素数考虑以上两种方法哪种好。

全部。O(log n)或者O(fai(P)-1),一般来说用①。

④递推法。 全部,O(n)。

关于递推法。见:

http://blog.csdn.net/whyorwhnt/article/details/19169035。

(3)一个经典的问题:求(a/b) mod p。

性质:设b'为b的逆元,即:b'b=1(mod p),那么 a/b = a*b' (mod p)。

证:

∵b'b=1(mod p)

∴b'b=1+px即b'=(1+px)/b。

∴a*b'=a*(1+px)/b=a*(1+0)/b(mod p)=a/b (mod p),证毕。

这个性质在a变求和边取模,然后求(a/b) mod p时实用。

【BZOJ】2186 沙拉公主的困惑的更多相关文章

  1. BZOJ 2186 沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 3397  Solved: 1164 [Submit] ...

  2. BZOJ 2186 沙拉公主的困惑(预处理逆元+欧拉函数)

    题意:求1-n!里与m!互质的数有多少?(m<=n<=1e6). 因为n!%m!=0,所以题目实际上求的是phi(m!)*n!/m!. 预处理出这些素数的逆元和阶乘的模即可. # incl ...

  3. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  4. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  5. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  6. BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][St ...

  7. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

  8. 【BZOJ2186】沙拉公主的困惑(数论)

    [BZOJ2186]沙拉公主的困惑(数论) 题面 BZOJ 题解 考虑答案是啥 先假设\(n=m\) 现在求的就是\(\varphi(m!)\) 但是现在\(n!\)是\(m!\)的若干倍 我们知道 ...

  9. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

随机推荐

  1. mapx 32位在win8 64位上使用

    在可以安装32位mapx的电脑上安装并破解后,将安装文件复制出来,放到c盘根目录下,用下面语句进行注册即可 Regsvr32 C:\MapX\Mapx50.DLL Regsvr32 C:\\MapX\ ...

  2. 推荐一款Java反编译器,比较好用

    转自:http://www.blogjava.net/xmatthew/archive/2008/10/28/237203.html 推荐一款Java反编译器,也使用了挺久的了,感觉还是很好用,就拿出 ...

  3. docker开发之pyudev模块用法

    一.实现功能:获取docker_id #docker数据源: [root@docker scripts]# docker ps -a CONTAINER ID IMAGE COMMAND CREATE ...

  4. vim+python

    #!/bin/bash # install fisa vim config echo '===============================' echo 'start to install ...

  5. HTML5 Canvas 用requestAnimation取代setInterval

    <!DOCTYPE html> <html lang="utf-8"> <meta http-equiv="Content-Type&quo ...

  6. Java BaseDao

    BaseDao类: package dao; import java.sql.*; public class BaseDao { private static final String driver ...

  7. Android控件常见属性

    1.宽/高android:layout_width android:layout_height// 取值match_parent //匹配父控件wrap_content //自适应,根据内容 如果指定 ...

  8. ionic准备之angular基础——继承(3)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. SharedPreferences具体解释(一)——基础知识

    我们在开发软件的时候,常须要向用户提供软件參数设置功能,比如我们经常使用的微信,用户能够设置是否同意陌生人加入自己为好友.对于软件配置參数的保存,假设是在window下通常我们会採用ini文件进行保存 ...

  10. hdu 5365 Run(BC 50 B题)(求四边形的个数)

    本来准备睡觉.结果还是忍不住想把它A了.由于已经看了题解了, 题意:就是给你一些坐标.都是整数,求一些正多边形的数目,官方题讲解是地球人都知道整数坐标构不成正三角形.正五边形和正六边形的... 然而我 ...