【BZOJ3112】[Zjoi2013]防守战线 单纯形法
【BZOJ3112】[Zjoi2013]防守战线

题解:依旧是转化成对偶问题,然后敲板子就行了~
建完表后发现跟志愿者招募的表正好是相反的,感觉很神奇~
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
using namespace std;
const double inf=1e12;
const double eps=1e-6;
double A[1010][10010];
int p[10010];
int n,m;
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void pivot(int l,int e)
{
double t=A[l][e];A[l][e]=1;
int i,j;
for(j=0;j<=n;j++) A[l][j]/=t;
for(p[0]=j=0;j<=n;j++) if(fabs(A[l][j])>eps) p[++p[0]]=j;
for(i=0;i<=m;i++) if(i!=l&&fabs(A[i][e])>eps)
{
t=A[i][e],A[i][e]=0;
for(j=1;j<=p[0];j++) A[i][p[j]]-=t*A[l][p[j]];
}
}
void simplex()
{
while(1)
{
double mn=inf;
int i,l=0,e=0;
for(i=1;i<=n;i++) if(A[0][i]>eps)
{
e=i;
break;
}
if(!e) return;
for(i=1;i<=m;i++) if(A[i][e]>eps&&A[i][0]/A[i][e]<mn) mn=A[i][0]/A[i][e],l=i;
if(!l) return;
pivot(l,e);
}
}
int main()
{
m=rd(),n=rd();
int i,j,l,r;
for(i=1;i<=m;i++) A[i][0]=rd();
for(i=1;i<=n;i++)
{
l=rd(),r=rd(),A[0][i]=rd();
for(j=l;j<=r;j++) A[j][i]=1;
}
simplex();
printf("%d",int(-A[0][0]+0.5));
return 0;
}
【BZOJ3112】[Zjoi2013]防守战线 单纯形法的更多相关文章
- BZOJ 3112: [Zjoi2013]防守战线 [单纯形法]
题目描述 战线可以看作一个长度为n 的序列,现在需要在这个序列上建塔来防守敌兵,在序列第i 号位置上建一座塔有Ci 的花费,且一个位置可以建任意多的塔,费用累加计算.有m 个区间[L1, R1], [ ...
- BZOJ3112 [Zjoi2013]防守战线 【单纯形】
题目链接 BZOJ3112 题解 同志愿者招募 费用流神题 单纯形裸题 \(BZOJ\)可过 洛谷被卡.. #include<algorithm> #include<iostream ...
- bzoj3550: [ONTAK2010]Vacation&&bzoj3112: [Zjoi2013]防守战线
学了下单纯形法解线性规划 看起来好像并不是特别难,第二个code有注释.我还有...*=-....这个不是特别懂 第一个是正常的,第二个是解对偶问题的 #include<cstdio> # ...
- bzoj3112 [Zjoi2013]防守战线
正解:线性规划. 直接套单纯形的板子,因为所约束条件都是>=号,且目标函数为最小值,所以考虑对偶转换,转置一下原矩阵就好了. //It is made by wfj_2048~ #include ...
- 单纯形 BZOJ3112: [Zjoi2013]防守战线
题面自己上网查. 学了一下单纯形.当然 证明什么的 显然是没去学.不然估计就要残废了 上学期已经了解了 什么叫标准型. 听起来高大上 其实没什么 就是加入好多松弛变量+各种*(-1),使得最后成为一般 ...
- ZJOI2013 防守战线
题目 战线可以看作一个长度为\(n\)的序列,现在需要在这个序列上建塔来防守敌兵,在序列第\(i\)号位置上建一座塔有\(C_i\)的花费,且一个位置可以建任意多的塔,费用累加计算.有\(m\)个区间 ...
- 数学(线性规划): ZJOI2013 防守战线
偷懒用的线性规划. #include <iostream> #include <cstring> #include <cstdio> using namespace ...
- BZOJ 3112 Zjoi2013 防守战线 单纯形
题目大意: 单纯形*2.. . #include <cmath> #include <cstdio> #include <cstring> #include < ...
- BZOJ 3112 [Zjoi2013]防守战线 线性规划
题意: 简单叙述: 一个长度为n的序列,在每一个点建塔的费用为Ci.有m个区间.每一个区间内至少有Dj个塔.求最小花费. 方法:线性规划 解析: 与上一题相似.相同使用对偶原理解题.解法不再赘述. 代 ...
随机推荐
- Java算法题:求素数
题目:判断101-200之间有多少个素数,并输出所有素数. 思路:判断素数的方法:用一个数分别去除2到sqrt(这个数),如果能被整除,则表明此数不是素数,反之是素数. 具体代码: public Ve ...
- 【转】docker安装PostgreSQL
原文:https://blog.csdn.net/liuyueyi1995/article/details/61204205 你先确认这两件事:1)执行 docker exec -it dream.p ...
- 【ecshop---新增包邮卡功能】
一:需求分析 项目组要求新增类似虚拟卡的包邮卡,用户获得包邮卡的方式包括后台发送和前台自助充值.包邮卡有使用期限.订单使用包邮卡免除邮费.可以和其他优惠活动同时进行! 二:开发功能点 后台:新增包邮卡 ...
- 什么是ICE (Internet Communications Engine)
http://user.qzone.qq.com/77811970 直接在google上搜索ICE,出来的结果并不多,所以很多人就认为ICE是个神秘的东西,其实,国内已经有很多大型应用在使用ICE了. ...
- android SQLite(单词的添加与查询应用)
本人小白,刚接触android,为方便记忆,将平时练习的代码写下来,跟大家分享,也希望大神批评指正. 这个实例主要用到的SQLite数据库的操作,可以向数据库添加单词,查询,修改以及删除单词,描述如有 ...
- 【OpenGL 学习笔记01】HelloWorld演示样例
<<OpenGL Programming Guide>>这本书是看了忘,忘了又看,赶脚还是把笔记做一做心里比較踏实,哈哈. 我的主题是,好记性不如烂笔头. ========== ...
- react native使用 mobx , can't find variable:Symbol
原因是因为 mobx的版本用的最新版本..用到了 Symbol部分es6的api特性. 解决问题办法 1. 把mobx降版本到 4.3.1 . mobx-react降版本到 5.1.0 即可. 或者 ...
- UVA 10679 I love Strings!!!(AC自己主动机)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- Effective JAVA 创建和销毁对象 遇到多参构造器考虑使用构建器
//构建器抽象类,为不同类的实现提供 public interface Builder<T> { public T build(); } /** * @描述: 营养表 */ public ...
- Mysql 常用函数汇总
转自:http://blog.csdn.net/qq_27416209/article/details/52020720 一.数学函数ABS(x) 返回x的绝对值BIN(x) 返回x的二进制( ...