「洛谷P3768」简单的数学题 莫比乌斯反演+杜教筛
题目链接
题目描述
输入一个整数n和一个整数p,你需要求出
\]
其中\(gcd(a,b)\)表示\(a\)与\(b\)的最大公约数
输入
一行两个整数\(p,n\)
输出
一行一个整数,为题目中所求值
样例
样例输入
998244353 2000
样例输出
883968974
数据范围
\(n\leq 10^{10}\)
\(5\times 10^8 \leq p \leq 1.1\times 10^9\)
\(p\)为质数(但貌似也可以不是?又不用求逆元)
题解
自己想出来的题!但是连\(WA\)两发就是因为杜教筛写挂了……
先不考虑取余,我们化一下题目中的式子,枚举\(gcd\)(警告!多公式)。
\]
\]
\]
\]
额,现在可以使用分块优化做到\(O(n)\)了,但是这完全不能胜任数据范围,我们换个角度,设\(dp=T\),枚举\(T\)会有什么结果?
\]
\]
现在好像反而变成\(O(n\log n)\)或\(O(n\sqrt{n})\)了,别急,我们看看第二层的求和的意义——狄利克雷卷积,这是\(Id\)函数与\(\mu\)函数的狄利克雷卷积,其值就等于\(\varphi\)。
\]
现在,我们只需要快速求出一个东西即可——\(T^2\varphi(T)\),前面的部分可以分块优化,我们急需解决的就是这个函数\(f(T)=T^2\varphi(T)\)的前缀和\(F(T)\)。显然,这是一个积性函数。
杜教筛的公式:
\]
于是我们需要一个函数与\(f\)卷起来,我们根据套路或枚举发现\(T^2\)项很恼人,于是尝试把这一项消掉,于是想到了\(g(x)=x^2\)。
\]
\]
根据公式\(\sum_{d|i}\varphi(d)=i\),继续变形
\]
\]
由于\(p(i)=i^3\)和\(q(i)=i^2\)的前缀和都有公式,我们可以对右边进行分块优化,就可以杜教筛了!这道题圆满解决,时间复杂度\(O(n^{\frac{2}{3}})\)。
不过有些小细节要注意,比如模数乘\(2\)可能会爆\(int\),\(n^2\)可能会爆\(long\ long\),需要先取模再平方
\(Code:\)
#include <map>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define N 5000005
#define ll long long
map<ll, ll>Phi;
ll n, mod, g[N];
int p[N], h[N], phi[N], cnt;
ll sqr(ll x)
{
ll a = 2 * x + 1, b = x + 1, c = x;
if (b % 2 == 0)b /= 2;
else c /= 2;
if (a % 3 == 0)a /= 3;
else
if (b % 3 == 0)b /= 3;
else c /= 3;
a %= mod, b %= mod, c %= mod;
return a * b % mod * c % mod;
}
ll seq(ll x)
{
ll a = x + 1, b = x;
if (a % 2 == 0)a /= 2;
else b /= 2;
a %= mod, b %= mod;
return a * b % mod;
}
ll vas(ll x)
{
ll a = seq(x);
return a * a % mod;
}
ll G(ll x)
{
if (x <= N - 5)
return g[int(x)];
if (Phi.find(x) != Phi.end())
return Phi[x];
ll ans = vas(x);
ll lst = 1;
for (ll i = 2; i <= x; i++)
{
i = x / (x / i);
ll w = (sqr(i) - sqr(lst)) % mod;
ans = (ans - w * G(x / i) % mod) % mod;
lst = i;
}
if (ans < 0)
ans += mod;
Phi.insert(make_pair(x, ans));
return ans;
}
ll Ans(ll x)
{
ll ans = 0, lst = 0;
for (ll i = 1; i <= x; i++)
{
i = x / (x / i);
ll z = seq(x / i);
z = z * z % mod;
ans = (ans + z * (G(i) - G(lst)) % mod) % mod;
lst = i;
}
if (ans < 0)
ans += mod;
return ans;
}
int main()
{
phi[1] = 1;
for (int i = 2; i <= N - 5; i++)
{
if (!h[i])
{
phi[i] = i - 1;
p[++cnt] = i;
}
for (int j = 1; j <= cnt; j++)
{
if (i * p[j] > N - 5)
break;
h[i * p[j]] = 1;
if (i % p[j] == 0)
phi[i * p[j]] = phi[i] * p[j];
else
phi[i * p[j]] = phi[i] * (p[j] - 1);
}
}
cin >> mod >> n;
for (int i = 1; i <= N - 5; i++)
g[i] = (g[i - 1] + 1ll * phi[i] * i % mod * i % mod) % mod;
cout << Ans(n) << '\n';
}
「洛谷P3768」简单的数学题 莫比乌斯反演+杜教筛的更多相关文章
- luogu 3768 简单的数学题 (莫比乌斯反演+杜教筛)
题目大意:略 洛谷传送门 杜教筛入门题? 以下都是常规套路的变形,不再过多解释 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ijgcd(i,j)$ $\sum ...
- 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛
题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...
- LOJ#6229. 这是一道简单的数学题(莫比乌斯反演+杜教筛)
题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^i\frac{lcm(i,j)}{gcd(i,j)}\] 答案对\(10^9+7\)取模. \(n< ...
- 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】
题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\) ...
- 洛谷 P6860 - 象棋与马(找性质+杜教筛)
题面传送门 首先我们来探究一下什么样的 \((a,b)\) 满足 \(p(a,b)=1\).不难发现只要点 \((1,0)\) 能够到达,那么网格上所有点都能到达,因为由于 \((1,0)\) 能够到 ...
- EOJ Monthly 2019.11 E. 数学题(莫比乌斯反演+杜教筛+拉格朗日插值)
传送门 题意: 统计\(k\)元组个数\((a_1,a_2,\cdots,a_n),1\leq a_i\leq n\)使得\(gcd(a_1,a_2,\cdots,a_k,n)=1\). 定义\(f( ...
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- 「洛谷1903」「BZOJ2120」「国家集训队」数颜色【带修莫队,树套树】
题目链接 [BZOJ传送门] [洛谷传送门] 题目大意 单点修改,区间查询有多少种数字. 解法1--树套树 可以直接暴力树套树,我比较懒,不想写. 稍微口胡一下,可以直接来一个树状数组套主席树,也就是 ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
随机推荐
- python中的 ' ' 和 " "
#!/usr/bin/python import MySQLdb try: conn = MySQLdb.connect(host = 'localhost', user = 'root', pass ...
- 第十一章 Tomcat的系统架构与设计模式(待续)
Tomcat总体设计 Tomcat中的设计模式
- Oracle 11g oracle 用户密码过期问题 (ZT)
http://www.blogjava.net/freeman1984/archive/2013/04/23/398301.html Oracle 11g 之前默认的用户时是没有密码过期的限制的,在O ...
- 【Python环境】matplotlib - 2D 与 3D 图的绘制
2015-10-30数据科学自媒体 类MATLAB API 最简单的入门是从类 MATLAB API 开始,它被设计成兼容 MATLAB 绘图函数. 让我们加载它: from pylab import ...
- Shell编程进阶 2.0 shell中断继续退出
break continue exit break 结束本次for循环 写个for循环脚本 vim for2.sh #!/bin/bash ## 5` do echo $i ] then b ...
- Qt creator 使用qwt
.pro中添加 LIBS += -L”C:\Qt\Qt5.3.2\5.3\msvc2013_opengl\lib” -lqwt INCLUDEPATH += "C:\Qt\Qt5.3.2\5 ...
- DAY19-上传头像并预览
一个简单的注册页面: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...
- executeUpdate,executeQuery,executeBatch 的区别
executeQuery : 用于实现单个结果集,例如: Select 一般使用executeQuery 就是来实现单个结果集的工具 executeUpdate 用于执行 INSERT.UPDATE ...
- 无法解决 equal to 操作中 "Chinese_PRC_CI_AS" 和 "Chinese_PRC_BIN" 之间的排序规则冲
在两个数据库之间进行复合查询时有时会出现如下错误: 无法解决 equal to 操作中 "Chinese_PRC_CI_AS" 和 "Chinese_PRC_BIN&qu ...
- FTP批量下载数据文件
包含ftp的命令脚本,建立临时文件. ::服务器连接信息 set username=root set password=root set ip=xxx.xxx.xxx.xxx set RemoteDi ...