洛谷 P1036 选数
嗯....
这种类型的题在新手村出现还是比较正常的,
但是不知道为什么它的分类竟然是过程函数与递归!!!(难道这不是一个深搜题吗???
好吧这就是一道深搜题,所以千万别被误导...
先看一下题目:https://www.luogu.org/problemnew/show/P1036
一道比较典型的深搜...
思路:
在n个数和每k个数这两个范围中进行搜索,然后看加起来的和是否为素数即可(详细的也不会说...注意边界条件为n个数全搜完和已经搜完k个数判断后... 大体过程:
主函数输入输出调用----->is_prime函数判断是否为素数------->深搜 下面是AC代码:
#include<cstdio>
#include<iostream>
#include<cmath> using namespace std; int x[], n, k, total;
inline bool is_prime(int x){
for(int i = ; i <= sqrt(x); i++)
if(x % i == ) return false;
return true;
} //筛素数 inline void dfs(int step, int sum, int cnt){
if(step == n + || cnt == k){ // 如果已经进行到了n+1次或者是已经有k个数,
if(is_prime(sum) && cnt == k)//判断选k个数后的和是否为素数
total++; // 方案+1
return;
}
dfs(step+, sum + x[step], cnt+);//继续搜索,选择下一个数
dfs(step+, sum, cnt);//继续枚举不选择下一个数的情况
return;
}//深搜
int main(){
scanf("%d%d", &n, &k);
for(int i = ; i <= n; i++){
scanf("%d", &x[i]);
}
dfs(, , );
printf("%d", total);
return ;
}
嗯... 关于深搜就是这样 ...
洛谷 P1036 选数的更多相关文章
- 【搜索】【入门】洛谷P1036 选数
题目描述 已知 n个整数x1,x2,…,xn,以及1个整数k(k<n).从nn个整数中任选kk个整数相加,可分别得到一系列的和. 例如当n=4,k=3,4个整数分别为3,7,12,19时, ...
- 洛谷P1036 选数 题解 简单搜索/简单状态压缩枚举
题目链接:https://www.luogu.com.cn/problem/P1036 题目描述 已知 \(n\) 个整数 \(x_1,x_2,-,x_n\) ,以及 \(1\) 个整数 \(k(k& ...
- (水题)洛谷 - P1036 - 选数
https://www.luogu.org/problemnew/show/P1036 $n$ 才20的数据量,我当时居然还在想怎么分组组合,直接 $2^{20}$ 暴力搞就行了. $x_i $太大了 ...
- 洛谷P1036选数(素数+组合数)
题目链接:https://www.luogu.org/problemnew/show/P1036 主要考两个知识点:判断一个数是否为素数.从n个数中选出m个数的组合 判断一个数是否为素数: 素数一定是 ...
- 洛谷——P1036 选数
题目描述 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12, ...
- 【洛谷P1036 选数】
这个题显然用到了深搜的内容 让我们跟着代码找思路 #include<bits/stdc++.h>//万能头 ],ans; inline bool prime(int n)//最简单的判定素 ...
- 洛谷 P1036 选数【背包型DFS/选or不选】
题目描述 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12, ...
- 洛谷P1036.选数(DFS)
题目描述 已知 n个整数 x1,x2,-,xn,以及11个整数k(k<n).从n个整数中任选k个整数相加,可分别得到一系列的和.例如当n=4,k=3,4个整数分别为3,7,12,19时,可得全部 ...
- 洛谷P1036 选数
题目描述 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12, ...
随机推荐
- webpack3.x看这个就够了
本文介绍webpack3.x的使用 说明,本文前后连贯性很强,建议从头往后看 目录 开始 css文件打包 image文件打包 字体文件打包 json文件打包 csv文件和xml文件打包 多入口文件打包 ...
- DAY15-Django模板语言
Django模板系统 官方文档 你可能已经注意到我们在例子视图中返回文本的方式有点特别. 也就是说,HTML被直接硬编码在 Python代码之中. def current_datetime(reque ...
- office 2010打开doc文档报错:Word 在尝试打开文件时遇到错误
今天在百度文库中下载了几个文档,下载后发现无法打开.出现以下的提示框. 那么,使用多年office的我,这点小问题当然难不倒我啦. 这个问题是由于系统安全设置所导致的 ,所有我们只需要处理这个安全设置 ...
- 关于win7 下双击不能打开jar 文件
关于这个问题解决如下: 我的java 安装路径为C:\java\jdk1.6\bin 1,首先检查jdk 的路径是否安装正确. 2,导出jar 包时,是否有添加 main class. 如果通过在do ...
- vesamenu.c32:not a COM32R image报错解决方案
今天用U盘刻录安装Linux Mint 的时候,一直出现 vesamenu.c32:not a COM32R image这个报错,查了很久,原因好像是电脑是老电脑的原因.处理的办法很简单,只需要输入l ...
- js实现鼠标拖拽
主要原理: 1.当鼠标按下时,记录鼠标坐标,用到的是 onmousedown: 2.当鼠标移动时,计算鼠标移动的坐标之差,用到的是 onmousemove: 3.当鼠标松开时,清除事件,用到的是 on ...
- GTK编程
一.简介 GTK(GIMP Toolkit)是一套跨多种平台的图形工具包,按LGPL许可协议发布的.虽然最初是为GIMP写的,但早已发展为一个功能强大.设计灵活的通用图形库.特别是被GNOME选中使得 ...
- 一个小错误,在for循环中,每次repaint()的时候,记得先把frame涂成白色的。等于擦掉原来的痕迹·。
import java.awt.*; import java.awt.event.*; import javax.swing.*; public class Animate { int x=1; in ...
- SDUT 2142 数据结构实验之图论二:基于邻接表的广度优先搜索遍历
数据结构实验之图论二:基于邻接表的广度优先搜索遍历 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Descript ...
- DBUtils工具类和DBCP连接池
今日内容介绍 1.DBUtils2.处理结果集的八种方式3.连接池4.连接池的用法1 PrepareStatement接口预编译SQL语句 1.1 预处理对象 * 使用PreparedStatemen ...