题面

传送门

思路

抖机灵

一开始看到这题我以为是棋盘模型-_-||

然而现实是骨感的

后来我尝试使用插头dp来交换,然后又惨死

最后我不得不把目光转向那个总能化腐朽为神奇的算法:网络流

思维

我们要先有一个思维的转变:要把棋盘上的“交换”操作,看成所有的黑色棋(白色棋等价)在移动

我们考虑令一个黑子往下移动一个

此时当前格子和下方格子的交换数都加一

考虑一条移动的路径,那么显然,这条路径两端的格子只进行了一次交换,但是路径上的所有格子进行了两次

我们可以考虑把这个过程变成网络流来做

但是有一个问题:一个格子如果本来就有一个黑棋,最后没有黑棋,或者本来是白棋,最后是黑棋,那么这个格子的收支会不平衡,也就是说我们硬做,连无向边的时候满足了流量平衡条件但却得不到最优解

而且如果每个格子只建一个点,也并不能把格子的交换次数限制考虑进去

那我们就要考虑拆点了

拆点

最基础的拆点:一个格子拆成两个,分别代表进入和走出,中间连一条容量为交换次数上限的边

但是这样有另一个问题:无法体现出路径两端的点和路径中间的点的区别(也就是如果“经过”了一个点,也只统计一点流量)

那我们再拆:把一个点拆成三个:left,now,right

从left向now连边、now向right连边,流量上限分别为限制的一半

这样就完美体现了只有流出、只有流入和流入流出都有的区别

相邻的点之间从right连向left

我们令源点向所有初始图中黑棋格子的now连边,汇点跟所有最终图中的黑棋格子的now连边,跑S-T最大流即可

问题

第一个大问题:如何解决上文中流量收支可能不平衡的问题?

答:如果该点是黑子->白子,那么这个点的出一定比入大一点流量;如果是白子->黑子,那么入一定比出大一点流量

第二个大问题:如何找最小?

做这个比较好办,把left-now和now-right边增加费用1就好了

结论&&最终实现方法

以下用<u,v,w,cap>表示u到v的有向边,费用w流量cap

建立费用流图,每个点拆成left,now,right

若该点在初始图中是黑的、最终图中是白的,那么连边(left,now,1,$\frac{limit}{2}$),(now,right,1,$\frac{limit+1}{2}$)

若该点在初始图中是白的、最终图中是黑的,那么连边(left,now,1,$\frac{limit+1}{2}$),(now,right,1,$\frac{limit}{2}$)

若该点在初始图和最终图中颜色相同,那么连边(left,now,1,$\frac{limit}{2}$),(now,right,1,$\frac{limit}{2}$)

其中limit表示这个格子的交换次数上限

建立附加源汇S-T

对于初始图中的黑点i,连边(S,now(i),0,1)

对于最终图中的黑点i,连边(now(i),T,0,1)

相邻的点i,j之间连边(right(i),left(j),0,inf)

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define inf 1e9
#define tot (n*m*3)
#define left(i,j) ((i-1)*m+j)
#define now(i,j) (((i-1)*m+j)+n*m)
#define right(i,j) (((i-1)*m+j)+(n*m<<1))
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
const int dx[9]={0,-1,-1,-1,0,0,1,1,1},dy[9]={0,-1,0,1,-1,1,-1,0,1};
int n,cnt=-1,m,first[2010],dis[2010],vis[2010],ans=0;
struct edge{
int to,next,w,cap;
}a[50010];
inline void add(int u,int v,int w,int cap){
a[++cnt]=(edge){v,first[u],w,cap};first[u]=cnt;
a[++cnt]=(edge){u,first[v],-w,0};first[v]=cnt;
}
int q[10010];
bool spfa(int s,int t){
int head=0,tail=1,i,v,u,w;
memset(dis,-1,sizeof(dis));memset(vis,0,sizeof(vis));
q[0]=t;vis[t]=1;dis[t]=0;
while(head<tail){
u=q[head++];vis[u]=0;
for(i=first[u];~i;i=a[i].next){
v=a[i].to;w=a[i].w;
if(a[i^1].cap&&((dis[v]==-1)||(dis[v]>dis[u]-w))){
dis[v]=dis[u]-w;
if(!vis[v]) q[tail++]=v,vis[v]=1;
}
}
}
return ~dis[s];
}
int dfs(int u,int t,int limit){
if(u==t||!limit){vis[u]=1;return limit;}
int i,v,f,flow=0,w;vis[u]=1;
for(i=first[u];~i;i=a[i].next){
v=a[i].to;w=a[i].w;
if(!vis[v]&&a[i].cap&&dis[v]==dis[u]-w){
if(!(f=dfs(v,t,min(limit,a[i].cap)))) continue;
a[i].cap-=f;a[i^1].cap+=f;
flow+=f;limit-=f;ans+=w*f;
if(!limit) return flow;
}
}
return flow;
}
int zkw(int s,int t){
int re=0;
while(spfa(s,t)){
vis[t]=1;
while(vis[t]){
memset(vis,0,sizeof(vis));
re+=dfs(s,t,inf);
}
}
return re;
}
int x1[30][30],x2[30][30];
int main(){
memset(first,-1,sizeof(first));
int i,j,t1=0,t2=0,ti,tj,k;char s[30];
n=read();m=read();
for(i=1;i<=n;i++){
scanf("%s",s);
for(j=1;j<=m;j++){
if(s[j-1]=='1'){
t1++;add(0,now(i,j),0,1);
x1[i][j]=1;
}
}
}
for(i=1;i<=n;i++){
scanf("%s",s);
for(j=1;j<=m;j++){
if(s[j-1]=='1'){
t2++;add(now(i,j),tot+1,0,1);
x2[i][j]=1;
}
}
}
if(t1!=t2){
puts("-1");return 0;
}
for(i=1;i<=n;i++){
scanf("%s",s);
for(j=1;j<=m;j++){
t2=s[j-1]-'0';
if(x1[i][j]==x2[i][j])
add(left(i,j),now(i,j),0,t2/2),add(now(i,j),right(i,j),0,t2/2);
if(x1[i][j]&&!x2[i][j])
add(left(i,j),now(i,j),0,t2/2),add(now(i,j),right(i,j),0,(t2+1)/2);
if(!x1[i][j]&&x2[i][j])
add(left(i,j),now(i,j),0,(t2+1)/2),add(now(i,j),right(i,j),0,t2/2);
}
}
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
for(k=1;k<=8;k++){
ti=i+dx[k];tj=j+dy[k];
if(ti<1||ti>n||tj<1||tj>m) continue;
add(right(i,j),left(ti,tj),1,inf);
}
}
}
if(zkw(0,tot+1)!=t1){
puts("-1");return 0;
}
cout<<ans<<endl;
}

[CQOI2012][bzoj2668] 交换棋子 [费用流]的更多相关文章

  1. 【BZOJ2668】[cqoi2012]交换棋子 费用流

    [BZOJ2668][cqoi2012]交换棋子 Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列 ...

  2. BZOJ2668: [cqoi2012]交换棋子(费用流)

    Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. Input 第一行 ...

  3. [CQOI2012] 交换棋子 - 费用流

    有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. Solution 一个点拆三份,入点,主点 ...

  4. BZOJ.2668.[CQOI2012]交换棋子(费用流zkw)

    题目链接 首先黑白棋子的交换等价于黑棋子在白格子图上移动,都到达指定位置. 在这假设我们知道这题用网络流做. 那么黑棋到指定位置就是一条路径,考虑怎么用流模拟出这条路径. 我们发现除了路径的起点和终点 ...

  5. 【BZOJ】【2668】【CQOI2012】交换棋子

    网络流/费用流 跪跪跪,居然还可以这样建图…… 题解:http://www.cnblogs.com/zig-zag/archive/2013/04/21/3033485.html 考虑每个点的交换限制 ...

  6. [bzoj2668]交换棋子

    基本思路是,要让所有黑点都相对应(所以首先判断黑点的个数).如果没有交换限制,可以按以下方法建图:源点向所有初始黑点连(1,0)的边,最终黑点向汇点连(1,0)的边,相邻的两点连边(inf,1),最小 ...

  7. BZOJ2668:[CQOI2012]交换棋子(费用流)

    题目描述 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. 输入输出格式 输入格式: 第一行 ...

  8. 【BZOJ-2668】交换棋子 最小费用最大流

    2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1055  Solved: 388[Submit][Status ...

  9. [luoguP3159] [CQOI2012]交换棋子(最小费用最大流)

    传送门 好难的网络流啊,建图真的超难. 如果不告诉我是网络流的话,我估计就会写dfs了. 使用费用流解决本题,设点 $p[i][j]$ 的参与交换的次数上限为 $v[i][j]$ ,以下为建图方式: ...

随机推荐

  1. java restful response 万能类

    import java.util.HashMap; import java.util.Map; public class ResponseData { private final String mes ...

  2. 关于无法解析的外部符号 _main

    今天在写一段代码的时候,遇到了这个问题,一般遇到这种问题,都是找不到主函数,就是main函数,可是我写的代码是有入口地址main函数的呀.最后发现是自己源文件里,main函数是.c文件,.h文件对应的 ...

  3. 数组可以直接转换为DataRow

    string[] cc=new string[3]{...}; Dt.Rows.Add(cc);

  4. ConfigureAwait(false)

    昨天在做项目的时候,用的dapper查数据用的QueryAsync 异步方法.给上级做代码审核时,上级说最好加上ConfigureAwait(false).能减少一些性能开销. 因为之前没用过所以看了 ...

  5. C语言学习笔记--字符串

    字符串是有序字符的集合,C 语言中没有字符串的概念,而是通过特殊的字符数组模拟字符串,是以'\0'结尾的字符数组. 1.字符数组与字符串 (1)在 C 语言中,字双引号引用的单个或多个字符是一种特殊的 ...

  6. Solr5.5.3的研究之路 ---1、从Mysql导入数据并创建索引

    公司需要用到全文检索,故使用Solr,也是新人一枚,本人查看的前提是Solr已经安装部署成功,我用的服务器是自带的Jetty 1.创建Collection [root@whoami bin]# ./s ...

  7. Xcode快捷

  8. 《Android应用性能优化》 第5章 多线程和同步

    1.DDMS中可以看见的系统线程(Andorid3.1的Galaxy Tab 10.1为例): main HeapWorker 执行finalize函数和引用对象清理 GC Garbage Colle ...

  9. tortoisesvn 本项目的忽略项

    https://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-dug-propertypage.html Adding and Editing Pr ...

  10. Alert---点击拍照弹出对话框

    /** * 照片对话框 *AlertDialog */ private void PhotoDialog() { AlertDialog.Builder builder = new Builder(m ...