梯度下降法

​ 下面的h(x)是要拟合的函数,J(θ)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(θ)就出来了。其中m是训练集的记录条数,j是参数的个数。

梯度下降法流程:

(1)先对θ随机赋值,可以是一个全零的向量。

(2)改变θ的值,使J(θ)按梯度下降的方向减少。

以上式为例:

(1)对于我们的函数J(θ)求关于θ的偏导:

(2)下面是更新的过程,也就是θi会向着梯度最小的方向进行减少。θi表示更新之前的值,-后面的部分表示按梯度方向减少的量,α表示步长,也就是每次按照梯度减少的方向变化多少。

值得注意的是,梯度是有方向的,对于一个向量θ,每一维分量θi都可以求出一个梯度的方向,我们就可以找到一个整体的方向,在变化的时候,我们就朝着下降最多的方向进行变化就可以达到一个最小点,不管它是局部的还是全局的。

批量梯度下降

​ (1)将J(θ)对θ求偏导,得到每个θ对应的梯度(m为训练样本的个数):

​ (2)由于是要最小化风险函数,所以按每个参数theta的梯度负方向,来更新每个theta

​ (3)从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数据,如果m很大,那么可想而知这种方法的迭代速度!!所以,这就引入了另外一种方法,随机梯度下降。

随机梯度下降

​ (1)上面的风险函数可以写成如下这种形式,损失函数对应的是训练集中每个样本的粒度,而上面批量梯度下降对应的是所有的训练样本:

(2)每个样本的损失函数,对theta求偏导得到对应梯度,来更新theta

(3)随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将theta迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。但是,SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。

梯度下降&随机梯度下降&批梯度下降的更多相关文章

  1. 批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解

      梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent ...

  2. 机器学习笔记 1 LMS和梯度下降(批梯度下降) 20170617

    https://www.cnblogs.com/alexYuin/p/7039234.html # 概念 LMS(least mean square):(最小均方法)通过最小化均方误差来求最佳参数的方 ...

  3. 监督学习:随机梯度下降算法(sgd)和批梯度下降算法(bgd)

    线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就 ...

  4. 监督学习——随机梯度下降算法(sgd)和批梯度下降算法(bgd)

    线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就 ...

  5. p1 批梯度下降算法

    (蓝色字体:批注:绿色背景:需要注意的地方:橙色背景是问题) 一,机器学习分类 二,梯度下降算法:2.1模型   2.2代价函数   2.3 梯度下降算法 一,机器学习分类 无监督学习和监督学习 无监 ...

  6. 1. 批量梯度下降法BGD 2. 随机梯度下降法SGD 3. 小批量梯度下降法MBGD

    排版也是醉了见原文:http://www.cnblogs.com/maybe2030/p/5089753.html 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度 ...

  7. 梯度下降算法对比(批量下降/随机下降/mini-batch)

    大规模机器学习: 线性回归的梯度下降算法:Batch gradient descent(每次更新使用全部的训练样本) 批量梯度下降算法(Batch gradient descent): 每计算一次梯度 ...

  8. 梯度下降、随机梯度下降、方差减小的梯度下降(matlab实现)

    梯度下降代码: function [ theta, J_history ] = GradinentDecent( X, y, theta, alpha, num_iter ) m = length(y ...

  9. ubuntu之路——day7.4 梯度爆炸和梯度消失、初始化权重、梯度的数值逼近和梯度检验

    梯度爆炸和梯度消失: W[i] > 1:梯度爆炸(呈指数级增长) W[i] < 1:梯度消失(呈指数级衰减) *.注意此时的1指单位矩阵,W也是系数矩阵 初始化权重: np.random. ...

随机推荐

  1. django的settings.py设置static

    DEBUG = True ################ STATICFILES ################ # A list of locations of additional stati ...

  2. TCS3200颜色传感器测试实验

    TCS3200颜色传感器测试实验 2013-08-02 17:18:24 分享: 标签:  Arduino  TCS3200  传感器 TCS3200颜色传感器是一款全彩的颜色检测器,包括了一块TAO ...

  3. NDK 编译报错:request for member 'FindClass' in something not a structure or union

    ndk编译 xx.c文件时一直报下面的错误: ”request for member 'FindClass' in something not a structure or union ...” 原因 ...

  4. 记录下Linux难记实用的命令

    看文件大小:du -sm * | sort -n 合并多个文件,可以跨文件夹合并:cat *_.txt >> news.txt 给文件改编码:iconv -f GBK -t UTF-8 原 ...

  5. Android屏幕适配终结者

    1,http://blog.csdn.net/zhengjingle/article/details/51742839 github : https://github.com/zhengjingle/ ...

  6. HTTP、TCP、UDP、Socket关系详解

    TCP.UDP和HTTP关系是什么? 1.TCP/IP是个协议组,可分为三个层次:网络层.传输层和应用层.在网络层有IP协议.ICMP协议.ARP协议.RARP协议和BOOTP协议.在传输层中有TCP ...

  7. 一行代码搞定所有屏幕适配AbViewUtil

    适配原理:抛弃google提供的dip理论与多套图片与布局方案,采用与UI设计师通用的px作为标准单位,原理是将UI设计师的设计图与当前查看的手机或其他设备的屏幕像素尺寸进行换算,得到缩放比例,在Ac ...

  8. Angular问题02 创建模块失败、 angular-cli名称问题、升级angular-cli

    1 创建模块失败 1.1 问题描述 利用 ng g m 模块名 创建新模块时出错 1.2 错误信息 1.3 问题原因 angular-cli 版本出现问题 1.4 解决办法 卸载掉之前使用的 angu ...

  9. iOS 判断设备是否越狱了

    #import "PrisonBreakCheck.h" @implementation PrisonBreakCheck /** * 判断iPhone是否越狱了 */ +(BOO ...

  10. Configuration File (php.ini) Path Loaded Configuration File 都有加载php.ini文件,有什么不同的地方?

    Configuration File (php.ini) Path /usr/local/php7/etc      这个目录下面也有php.ini文件(如果在编译./configure -with- ...