Description

The Little Elephant loves sortings.

He has an array a consisting of n integers. Let's number the array elements from 1 to n, then the i-th element will be denoted as ai. The Little Elephant can make one move to choose an arbitrary pair of integers l and r (1 ≤ l ≤ r ≤ n) and increase ai by 1 for all i such that l ≤ i ≤ r.

Help the Little Elephant find the minimum number of moves he needs to convert array a to an arbitrary array sorted in the non-decreasing order. Array a, consisting of n elements, is sorted in the non-decreasing order if for any i (1 ≤ i < nai ≤ ai + 1 holds.

Input

The first line contains a single integer n (1 ≤ n ≤ 105) — the size of array a. The next line contains n integers, separated by single spaces — array a (1 ≤ ai ≤ 109). The array elements are listed in the line in the order of their index's increasing.

Output

In a single line print a single integer — the answer to the problem.

Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64dspecifier.

Examples
input
3
1 2 3
output
0
input
3
3 2 1
output
2
input
4
7 4 1 47
output
6
Note

In the first sample the array is already sorted in the non-decreasing order, so the answer is 0.

In the second sample you need to perform two operations: first increase numbers from second to third (after that the array will be: [3, 3, 2]), and second increase only the last element (the array will be: [3, 3, 3]).

In the third sample you should make at least 6 steps. The possible sequence of the operations is: (2; 3), (2; 3), (2; 3), (3; 3), (3; 3), (3; 3). After that the array converts to [7, 7, 7, 47].

题意:可以把区间的数增加相同的值(值的范围是1-n),让数列成为非递减

解法:当然让不符合要求的数字增加到最近的最大值,比如 7 4 1变成7 7 7 ,我们只需要计算7 4,4 1之间的差值就行(增加同一个数,两个数的差值不变的)

#include<bits/stdc++.h>
using namespace std;
long long a[100005];
int pos;
int n;
int d;
int main()
{
long long sum=0;
int pos=0;
int flag=0;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
d=a[1];
for(int i=2;i<=n;i++)
{
if(a[i]<a[i-1])
{
sum+=(a[i-1]-a[i]);
// pos=(d-a[i]);
}
// cout<<a[i]<<"A"<<endl;
}
cout<<sum<<endl;
return 0;
}

  

Codeforces Round #129 (Div. 2) B的更多相关文章

  1. Codeforces Round #129 (Div. 2)

    A. Little Elephant and Rozdil 求\(n\)个数中最小值的个数及下标. B. Little Elephant and Sorting \[\sum_{i=1}^{n-1}{ ...

  2. 字符串(后缀自动机):Codeforces Round #129 (Div. 1) E.Little Elephant and Strings

    E. Little Elephant and Strings time limit per test 3 seconds memory limit per test 256 megabytes inp ...

  3. Codeforces Round #129 (Div. 1)E. Little Elephant and Strings

    题意:有n个串,询问每个串有多少子串在n个串中出现了至少k次. 题解:sam,每个节点开一个set维护该节点的字符串有哪几个串,启发式合并set,然后在sam上走一遍该串,对于每个可行的串,所有的fa ...

  4. Codeforces Round #129 (Div. 2) C

    Description The Little Elephant very much loves sums on intervals. This time he has a pair of intege ...

  5. Codeforces Round #129 (Div. 2) A

    Description The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. &quo ...

  6. Educational Codeforces Round 129 (Rated for Div. 2) A-D

    Educational Codeforces Round 129 (Rated for Div. 2) A-D A 题目 https://codeforces.com/contest/1681/pro ...

  7. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  8. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

  9. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

随机推荐

  1. 【LeetCode】018 4Sum

    题目: Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = ...

  2. BZOJ2548:[CTSC2002]灭鼠行动

    我对模拟的理解:https://www.cnblogs.com/AKMer/p/9064018.html 题目传送门:https://www.lydsy.com/JudgeOnline/problem ...

  3. C#如何对DataTable中的数据进行条件搜索

    经常遇到将数据库中的数据读取到DataTable中的时候再次对DataTable进行条件筛选,下面的筛选的一个例子: DataRow[] dr = dt.Select("token = '& ...

  4. Java 的 Tuple 元组数据类型

    元组类型,即 Tuple 常在脚本语言中出现,例如 Scala 的 ("Unmi", "china@qq.com", "blahbla"). ...

  5. JAVA 1.5 局部特性(可变参数/ANNOTATION/并发操作)

    1: 可变参数 可变参数意味着可以对某类型参数进行概括,例如十个INT可以总结为一个INT数组,当然在固定长度情况下用数组是很正常的 这也意味着重点是可变,不定长度的参数 PS1:对于继承和重写我没有 ...

  6. MyBatis总结(1)

    MyBatis前身是ibatis,是一个数据持久层框架.封装优化了普通JDBC过程, 如数据库连接的创建.设置SQL语句参数.执行SQL语句.事务.结果映射以及资源释放等. MyBatis是一个支持普 ...

  7. OpenXml 2.0 读取Excel

    Excel 单元格中的数据类型包括7种: Boolean.Date.Error.InlineString.Number.SharedString.String 读取源代码: List<strin ...

  8. ipcs、ipcrm命令

    进程间通信概述进程间通信有如下的目的:1.数据传输,一个进程需要将它的数据发送给另一个进程,发送的数据量在一个字节到几M之间:2.共享数据,多个进程想要操作共享数据,一个进程对数据的修改,其他进程应该 ...

  9. Dialog 自定义使用3(回调点击事件)

    1 , Dialog布局 <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns ...

  10. Java之反射(部分文档摘过来方便以后查看)

    第1章 类加载器 1.1 类的加载 当程序要使用某个类时,如果该类还未被加载到内存中,则系统会通过加载,连接,初始化三步来实现对这个类进行初始化. l 加载 就是指将class文件读入内存,并为之创建 ...