题目大意:

http://www.lydsy.com/JudgeOnline/problem.php?id=3881

题解:

这道题我想出了三种做法,不过只有最后一种能过。


第一种:

首先我们把所有的操作离线下来,把所有的字符串全部插入,构建fail树

对于每个字符串记录插入时间,并设S集合中的字符串的插入时间为无限大

然后对于每一个询问,查找fail树中以\(S_x\)为根的子树里有多少插入时间小于询问时间的节点。

这一步可以处理出dfs序后用可持久化线段树搞。

但是它TLE了,我觉得这种做法完全没有问题啊,为什么还是TLE了....


第二种:

首先只插入S集合中所有的字符串,然后构建AC自动机,求出fail树

然后对于每一次向T集合中的插入,我们把这个串扔到自动机里

这时候我们发现,这个串仍到AC自动机里后经过的所有的状态的对应的串都多出现了一次

所以我们知道,经过的所有的节点及其到fail树的根的路径上的点代表的串都多出现了一次

所以将所有经过的状态的节点拿出来,按照dfs序排序,将所有节点到根的路径上的节点都+1

相邻节点的lca到根的路径上的节点-1.(dfs序最大的和dfs最小的不相邻)

这个操作我们用树链剖分套线段树即可\(O(nlog^2n)\) TLE


第三种:

仔细考虑一下发现上面的操作可以用单点修改,子树查询的方式搞掉

所以在dfs序上用树状数组就好了啊....

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const int maxn = 2000010;
int ch[maxn][26],nodecnt;
int mp[maxn];
char s[2000010];
inline void insert(const int &pos){
int len = strlen(s),nw = 0;
for(int i=0;i<len;++i){
int c = s[i] - 'a';
if(ch[nw][c] == 0) ch[nw][c] = ++ nodecnt;
nw = ch[nw][c];
}mp[pos] = nw;
}
int fail[maxn],q[maxn];
inline void build(){
int l = 0,r = -1;
for(int c=0;c<26;++c){
if(ch[0][c]){
fail[ch[0][c]] = 0;
q[++r] = ch[0][c];
}
}
while(l <= r){
int u = q[l++];
for(int c=0;c<26;++c){
int t = ch[fail[u]][c];
if(!ch[u][c]) ch[u][c] = t;
else{
fail[ch[u][c]] = t;
q[++r] = ch[u][c];
}
}
}
}
struct Edge{
int to,next;
}G[maxn<<1];
int head[maxn],cnt;
void add(const int &u,const int &v){
G[++cnt].to = v;
G[cnt].next = head[u];
head[u] = cnt;
}
#define v G[i].to
int fa[maxn],ind[maxn],oud[maxn],dfs_clock;
int siz[maxn],son[maxn],dep[maxn];
void dfs(const int &u){
siz[u] = 1;
for(int i = head[u];i;i=G[i].next){
if(v == fa[u]) continue;
fa[v] = u;
dep[v] = dep[u] + 1;
dfs(v);
siz[u] += siz[v];
if(siz[son[u]] < siz[v]) son[u] = v;
}
}
int top[maxn];
void dfs(const int &u,const int &tp){
top[u] = tp;ind[u] = ++dfs_clock;
if(son[u]) dfs(son[u],tp);
for(int i = head[u];i;i=G[i].next){
if(v == son[u] || v == fa[u]) continue;
dfs(v,v);
}oud[u] = dfs_clock;
}
#undef v
inline int lca(int u,int v){
while(top[u] != top[v]){
if(dep[top[u]] < dep[top[v]]) swap(u,v);
u = fa[top[u]];
}return dep[u] < dep[v] ? u : v;
}
#define lowbit(x) (x&-x)
int c[maxn+100];
inline void modify(int x,int y){
for(;x <= dfs_clock + 10;x += lowbit(x)) c[x] += y;
}
inline int query(int x){
int ret = 0;
for(;x;x-=lowbit(x)) ret += c[x];
return ret;
}
int a[maxn];
inline bool cmp(const int &i,const int &j){
return ind[i] < ind[j];
}
inline void find(){
int len = strlen(s),nw = 0;
a[0] = 0;
for(int i = 0;i<len;++i){
nw = ch[nw][s[i] - 'a'];
a[++a[0]] = nw+1;
}sort(a+1,a+a[0]+1,cmp);
int p = 1;
for(int i=1;i<=a[0];++i){
if(a[i] != a[i-1] || i == 1) a[p++] = a[i];
}a[0] = p-1;
for(int i=1;i<=a[0];++i){
modify(ind[a[i]],1);
if(i != a[0]) modify(ind[lca(a[i],a[i+1])],-1);
}
}
int main(){
int n;read(n);
for(int i=1;i<=n;++i){
scanf("%s",s);
insert(i);
}build();
for(int i=1;i<=nodecnt;++i) add(fail[i]+1,i+1);
dfs(1);dfs(1,1);
int m;read(m);
int op;
while(m--){
read(op);
if(op == 1){
scanf("%s",s);
find();
}else{
read(op);
printf("%d\n",query(oud[mp[op]+1]) - query(ind[mp[op]+1]-1));
}
}
getchar();getchar();
return 0;
}

bzoj 3881: [Coci2015]Divljak AC自动机的更多相关文章

  1. BZOJ 3881: [Coci2015]Divljak [AC自动机 树链的并]

    3881: [Coci2015]Divljak 题意:添加新文本串,询问某个模式串在多少种文本串里出现过 模式串建AC自动机,考虑添加一个文本串,走到的节点记录下来求树链的并 方法是按dfs序排序去重 ...

  2. BZOJ 3881[COCI2015]Divljak (AC自动机+dfs序+lca+BIT)

    显然是用AC自动机 先构建好AC自动机,当B中插入新的串时就在trie上跑,对于当前点,首先这个点所代表的串一定出现过,然后这个点指向的fail也一定出现过.那么我们把每个点fail当作父亲,建一棵f ...

  3. BZOJ 3881: [Coci2015]Divljak

    3881: [Coci2015]Divljak Time Limit: 20 Sec  Memory Limit: 768 MBSubmit: 553  Solved: 176[Submit][Sta ...

  4. BZOJ 3881 [Coci2015]Divljak(AC自动机+树状数组)

    建立AC自动机然后,加入一个串之后考虑这个串的贡献.我们把这个串扔到AC自动机里面跑.最后对经过每一个点到的这个点在fail树的根的路径上的点有1的贡献.求链的并,我们把这些点按DFS序排序,然后把每 ...

  5. BZOJ3881[Coci2015]Divljak——AC自动机+树状数组+LCA+dfs序+树链的并

    题目描述 Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: “1 P”,Bob往自己的集合里添加了一个字符串P. ...

  6. 【bzoj3881】[Coci2015]Divljak AC自动机+树链的并+DFS序+树状数组

    题目描述 Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: “1 P”,Bob往自己的集合里添加了一个字符串P. ...

  7. BZOJ 3881 [COCI2015]Divljak (Trie图+Fail树+树链的并+树状数组维护dfs序)

    题目大意: Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: “1 P”,Bob往自己的集合里添加了一个字符串P. ...

  8. bzoj 3881 [Coci2015]Divljak——LCT维护parent树链并

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3881 对 S 建 SAM ,每个 T 会让 S 的 parent 树的链并答案+1:在 T ...

  9. bzoj 3881 [Coci2015]Divljak fail树+树链的并

    题目大意 Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: "1 P",Bob往自己的集合里添 ...

随机推荐

  1. Java防止XSS攻击

    方法一:转义存储:添加XssFilter 1.在web.xml添加过滤器: <!-- 解决xss漏洞 --> <filter> <filter-name>xssFi ...

  2. Python的自省机制

    什么是自省? 在日常生活中,自省(introspection)是一种自我检查行为. 在计算机编程中,自省是指这种能力:检查某些事物以确定它是什么.它知道什么以及它能做什么.自省向程序员提供了极大的灵活 ...

  3. 测试站如何最快获取正式站的最新数据: ln -s

    针对静态数据, 比如图片/js等文件, 测试站如何获取最新的呢? ln -s /alidata/www/mysite/uploads /alidata/www/mysite_test/uploads ...

  4. java对IO的操作

    import java.io.*; public class HelloWorld { //Main method. public static void main(String[] args) { ...

  5. CSS 布局实例系列(四)如何实现容器中每一行的子容器数量随着浏览器宽度的变化而变化?

    Hello,小朋友们,还记得我是谁吗?对了,我就是~超威~好啦,言归正传,今天的布局实例是: 实现一个浮动布局,红色容器中每一行的蓝色容器数量随着浏览器宽度的变化而变化,就如下图: 肯定有人心里犯嘀咕 ...

  6. 我的Java开发学习之旅------>Base64的编码思想以及Java实现

    Base64是一种用64个字符来表示任意二进制数据的方法. 用记事本打开exe.jpg.pdf这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多无法显示和打印的字符,所以,如果要让记事本这样的 ...

  7. Elasticsearch使用记录

    Elasticsearch使用记录 Elasticsearch的搭建方法 1.RPM方式搭建 首先去官网[https://www.elastic.co/downloads/elasticsearch# ...

  8. [原创]java WEB学习笔记18:java EE 中的MVC 设计模式(理论)

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...

  9. 【六】MongoDB管理之副本集

    一.复制介绍 所谓的复制就是在多个主机之间同步数据的过程. 1.数据冗余及可用性 复制技术提供数据冗余及可用性,在不同的数据库服务器上使用多个数据副本,复制技术防止单个数据库服务器出现数据故障而出现数 ...

  10. hid_info函数分析

    昨天博文<linux下无线鼠标驱动执行流程>中有一行输出信息很让我迷惑,如下所示: [ :1D57: Mouse [HID Wireless Mouse HID Wireless Mous ...