ACM学习历程—HDU5475 An easy problem(线段树)(2015上海网赛08题)
Problem Description
One day, a useless calculator was being built by Kuros. Let's assume that number X is showed on the screen of calculator. At first, X = 1. This calculator only supports two types of operation.
1. multiply X with a number.
2. divide X with a number which was multiplied before.
After each operation, please output the number X modulo M.
Input
The first line is an integer T(1≤T≤10),
indicating the number of test cases.
For each test case, the first line are two integers Q and M. Q is the number of
operations and M is described above. (1≤Q≤105,1≤M≤109)
The next Q lines, each line starts with an integer x indicating the type of
operation.
if x is 1, an integer y is given, indicating the number to multiply. (0<y≤109)
if x is 2, an integer n is given. The calculator will divide the number which
is multiplied in the nth operation. (the nth operation must be a type 1
operation.)
It's guaranteed that in type 2 operation, there won't be two same n.
Output
For each test case, the first line, please
output "Case #x:" and x is the id of the test cases starting from 1.
Then Q lines follow, each line please output an answer showed by the
calculator.
Sample Input
1
10 1000000000
1 2
2 1
1 2
1 10
2 3
2 4
1 6
1 7
1 12
2 7
Sample Output
Case #1:
2
1
2
20
10
1
6
42
504
84
题目主要是出现的除法,在模条件下是不能进行除法的,除非存在逆元可以实现除法,但是此处除数不一定与被除数互质。
但是如果过程中不模的话,就要使用大数,会T。
考虑到题目中提到了,除数不会出现相同的。
也就是如果乘了1,2,3,然后再除掉2的话,结果就是由1和3构成,这样就不用考虑每个数的情况了,此时的每个数就是一个整体,结果只和这个数有没有出现有关。
于是可以考虑用线段树来维护分段的积。当某一个数被除掉了,所有与这个数相关的区间都要重新计算,最多有log(q)个区间。
这样效率就是qlogq,是满足条件的。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define LL long long using namespace std; const int maxN = ;
int q, m;
int op[maxN], top; //线段树
struct node
{
int lt, rt;
LL val;
}tree[*maxN]; //向上更新
void pushUp(int id)
{
tree[id].val = (tree[id<<].val*tree[id<<|].val)%m;
} //建立线段树
void build(int lt, int rt, int id)
{
tree[id].lt = lt;
tree[id].rt = rt;
tree[id].val = ;//每段的初值,根据题目要求
if (lt == rt)
{
//tree[id].add = ??;
return;
}
int mid = (lt+rt)>>;
build(lt, mid, id<<);
build(mid+, rt, id<<|);
pushUp(id);
} void add(int lt, int rt, int id, int pls)
{
if (lt <= tree[id].lt && rt >= tree[id].rt)
{
if (pls)
{
tree[id].val *= pls;
tree[id].val %= m;
}
else
tree[id].val = ;
return;
}
int mid = (tree[id].lt+tree[id].rt)>>;
if (lt <= mid)
add(lt, rt, id<<, pls);
if (rt > mid)
add(lt, rt, id<<|, pls);
pushUp(id);
} void work()
{
build(, q, );
top = ;
int d, y;
for (int i = ; i < q; ++i)
{
scanf("%d%d", &d, &y);
if (d == )
add(top, top, , y);
else
add(y, y, , );
op[top++] = y;
printf("%I64d\n", tree[].val);
}
} int main()
{
//freopen("test.in", "r", stdin);
int T;
scanf("%d", &T);
for (int times = ; times <= T; ++times)
{
printf("Case #%d:\n", times);
scanf("%d%d", &q, &m);
work();
}
return ;
}
ACM学习历程—HDU5475 An easy problem(线段树)(2015上海网赛08题)的更多相关文章
- ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)
Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...
- ACM学习历程——HDU5017 Ellipsoid(模拟退火)(2014西安网赛K题)
---恢复内容开始--- Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distanc ...
- ACM学习历程——HDU3333 Turing Tree(线段树 && 离线操作)
Problem Description After inventing Turing Tree, 3xian always felt boring when solving problems abou ...
- ACM学习历程—POJ1151 Atlantis(扫描线 && 线段树)
Description There are several ancient Greek texts that contain descriptions of the fabled island Atl ...
- hdu 5475 模拟计算器乘除 (2015上海网赛H题 线段树)
给出有多少次操作 和MOD 初始值为1 操作1 y 表示乘上y操作2 y 表示除以第 y次操作乘的那个数 线段树的叶子结点i 表示 第i次操作乘的数 将1替换成y遇到操作2 就把第i个结点的值 替换成 ...
- ACM学习历程—HDU 5443 The Water Problem(RMQ)(2015长春网赛1007题)
Problem Description In Land waterless, water is a very limited resource. People always fight for the ...
- ACM学习历程—HDU5476 Explore Track of Point(平面几何)(2015上海网赛09题)
Problem Description In Geometry, the problem of track is very interesting. Because in some cases, th ...
- ACM学习历程—HDU5478 Can you find it(数论)(2015上海网赛11题)
Problem Description Given a prime number C(1≤C≤2×105), and three integers k1, b1, k2 (1≤k1,k2,b1≤109 ...
- ACM学习历程—HDU 5025 Saving Tang Monk(广州赛区网赛)(bfs)
Problem Description <Journey to the West>(also <Monkey>) is one of the Four Great Classi ...
随机推荐
- 【BZOJ3488】[ONTAK2010]Highways 扫描线+树状数组
[BZOJ3488][ONTAK2010]Highways Description 给一棵n个点的树以及m条额外的双向边q次询问,统计满足以下条件的u到v的路径:恰经过一条额外的边不经过树上u到v的路 ...
- 【BZOJ3744】Gty的妹子序列 分块+树状数组
[BZOJ3744]Gty的妹子序列 Description 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzo ...
- java ScriptEngine 使用
Java SE 6最引人注目的新功能之一就是内嵌了脚本支持.在默认情况下,Java SE 6只支持JavaScript,但这并不以为着Java SE 6只能支持JavaScript.在Java SE ...
- csv文件的格式
csv, comma separated values csv是一种纯文本文件. csv文件由任意数目的记录构成,记录间以换行符分割,每条记录由字段构成,字段间以逗号作为分隔符. 如果字段中有逗号,那 ...
- [ACM] FZU 2087 统计数边 (有多少边至少存在一个最小生成树里面)
Problem Description 在图论中,树:随意两个顶点间有且仅仅有一条路径的图. 生成树:包括了图中全部顶点的一种树. 最小生成树:对于连通的带权图(连通网)G,其生成树也是带权的. 生成 ...
- vim vimdiff diff 使用及命令
vim: vim 从 vim7 开始加入了多标签切换的功能, 相当于多窗口. 之前的版本虽然也有多文件编辑功能, 但是总之不如这个方便啦.用法::tabnew [++opt选项] [+cmd] 文件 ...
- 高性能javascript学习总结(3)--数据访问
在 JavaScript 中,数据存储位置可以对代码整体性能产生重要影响.有四种数据访问类型:直接量,变量,数组项,对象成员. 直接量仅仅代表自己,而不存储于特定位置. JavaScr ...
- Floyd 学习笔记
#include <cstdio> #include <cstring> #include <ctype.h> #include <cstdlib> # ...
- 用 Java 技术创建 RESTful Web 服务
JAX-RS:一种更为简单.可移植性更好的替代方式 JAX-RS (JSR-311) 是一种 Java™ API,可使 Java Restful 服务的开发变得迅速而轻松.这个 API 提供了一种基于 ...
- [算法]K-SUM problem
一.Two Sum Given an array of integers, find two numbers such that they add up to a specific target nu ...