RPN(区域生成网络)
转:懒人元(侵删)
RPN全称是Region Proposal Network,Region Proposal的中文意思是“区域选取”,也就是“提取候选框”的意思,所以RPN就是用来提取候选框的网络。
1. RPN的意义
RPN第一次出现在世人眼中是在Faster RCNN这个结构中,专门用来提取候选框,在RCNN和Fast RCNN等物体检测架构中,用来提取候选框的方法通常是Selective Search,是比较传统的方法,而且比较耗时,在CPU上要2s一张图。所以作者提出RPN,专门用来提取候选框,一方面RPN耗时少,另一方面RPN可以很容易结合到Fast RCNN中,称为一个整体。
RPN的引入,可以说是真正意义上把物体检测整个流程融入到一个神经网络中,这个网络结构叫做Faster RCNN; Faster RCNN = RPN + Fast RCNN 
图1 Faster RCNN的整体结构
我们不难发现,RPN在整个Faster RCNN中的位置,处于中间部分;
2. RPN的运作机制
我们先来看看Faster RCNN原文中的图:

图2 RPN的结构
图2展示了RPN的整个过程,一个特征图经过sliding window处理,得到256维特征,然后通过两次全连接得到结果2k个分数和4k个坐标;相信大家一定有很多不懂的地方;我把相关的问题一一列举:
- RPN的input 特征图指的是哪个特征图?
- 为什么是用sliding window?文中不是说用CNN么?
- 256维特征向量如何获得的?
- 2k和4k中的k指的是什么?
- 图右侧不同形状的矩形和Anchors又是如何得到的?
首先回答第一个问题,RPN的输入特征图就是图1中Faster RCNN的公共Feature Map,也称共享Feature Map,主要用以RPN和RoI Pooling共享;
对于第二个问题,我们可以把3x3的sliding window看作是对特征图做了一次3x3的卷积操作,最后得到了一个channel数目是256的特征图,尺寸和公共特征图相同,我们假设是256 x (H x W);
对于第三个问题,我们可以近似的把这个特征图看作有H x W个向量,每个向量是256维,那么图中的256维指的就是其中一个向量,然后我们要对每个特征向量做两次全连接操作,一个得到2个分数,一个得到4个坐标,由于我们要对每个向量做同样的全连接操作,等同于对整个特征图做两次1 x 1的卷积,得到一个2 x H x W和一个4 x H x W大小的特征图,换句话说,有H x W个结果,每个结果包含2个分数和4个坐标;
图3 问题1,2,3的解答描述图
这里我们需要解释一下为何是2个分数,因为RPN是提候选框,还不用判断类别,所以只要求区分是不是物体就行,那么就有两个分数,前景(物体)的分数,和背景的分数;
我们还需要注意:4个坐标是指针对原图坐标的偏移,首先一定要记住是原图;
此时读者肯定有疑问,原图哪里来的坐标呢?
这里我要解答最后两个问题了:
首先我们知道有H x W个结果,我们随机取一点,它跟原图肯定是有个一一映射关系的,由于原图和特征图大小不同,所以特征图上的一个点对应原图肯定是一个框,然而这个框很小,比如说8 x 8,这里8是指原图和特征图的比例,所以这个并不是我们想要的框,那我们不妨把框的左上角或者框的中心作为锚点(Anchor),然后想象出一堆框,具体多少,聪明的读者肯定已经猜到,K个,这也就是图中所说的K anchor boxes(由锚点产生的K个框);换句话说,H x W个点,每个点对应原图有K个框,那么就有H x W x k个框默默的在原图上,那RPN的结果其实就是判断这些框是不是物体以及他们的偏移;那么K个框到底有多大,长宽比是多少?这里是预先设定好的,共有9种组合,所以k等于9,最后我们的结果是针对这9种组合的,所以有H x W x 9个结果,也就是18个分数和36个坐标;
图4 问题4,5的解答描述图
3. RPN的整个流程回顾
最后我们再把RPN整个流程走一遍,首先通过一系列卷积得到公共特征图,假设他的大小是N x 16 x 16,然后我们进入RPN阶段,首先经过一个3 x 3的卷积,得到一个256 x 16 x 16的特征图,也可以看作16 x 16个256维特征向量,然后经过两次1 x 1的卷积,分别得到一个18 x 16 x 16的特征图,和一个36 x 16 x 16的特征图,也就是16 x 16 x 9个结果,每个结果包含2个分数和4个坐标,再结合预先定义的Anchors,经过后处理,就得到候选框;整个流程如图5:
图5 RPN整个流程
RPN(区域生成网络)的更多相关文章
- 36th成都区域赛网络赛 hdoj4039 The Social Network(建图+字符串处理)
这题是某年成都区域赛网络赛的一题. 这题思路非常easy,可是从时间上考虑,不妨不要用矩阵存储,我用的链式前向星. 採用线上查询.利用map对字符串编号,由于非常方便.要推荐的朋友,事实上就是朋友的朋 ...
- 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...
- 区域存储网络(SAN)与 网络直接存储(NAS)
随着互联网及网络应用的飞速发展,数据信息存储系统所需处理的数据类型也呈爆炸性增长,这使数据信息存储系统面临前所未有的挑战.附加式网络存储装置(Network Attached Storage,缩写为N ...
- networkx生成网络的子网计算
当我们用networkx生成网络时,节点之间的关系是随机的,很多时候我们生成的一个网络,存在不止一个子网,也就是说任意两个节点之间不一定连通 当我们想生成一个任意两点都能连通的网络时,就需要去判断生成 ...
- 指针生成网络(Pointer-Generator-Network)原理与实战
指针生成网络(Pointer-Generator-Network)原理与实战 阅读目录 0 前言 1 Baseline sequence-to-sequence 2 Pointer-Generat ...
- 一、生成网络表--create Netlist
Orcad Capture原理图篇 一.生成网络表--create Netlist 1.操作: .dsn文件--Tools--create Netlist 出现如下对话框--默认不进行更改--点击确定 ...
- Zabbix监控实现跨区域跨网络监控数据
Zabbix监控实现跨区域跨网络监控数据 环境: 公司现有服务器10台,其中5台服务器有一台安装了zabbix,并且这5台服务器处于一个网络,只有一台服务器有公网ip, 另外的5台处于另一个网络,仅有 ...
- 对抗生成网络GAN
该方法常用于: 图像生成 图像修复,训练用了MSE+Global+Local数据,其中Global+Local判别式用于全局+局部一致性. 图像超分辨率重构 GAN的基本原理,主要包含两个网络 ...
- 对抗生成网络 Generative Adversarial Networks
1. Basic idea 基本任务:要得到一个generator,能够模拟想要的数据分布.(一个低维向量到一个高维向量的映射) discriminator就像是一个score function. 如 ...
随机推荐
- CentOS7自动补齐
cenos7,最小安装,做服务器嘛.但是发现tab键的自动补齐功能没有:其实可以直接把centos7作为yum源,然后直接安装bash-completion yum install -y bash- ...
- 第一章计算机网络和因特网-day02
1.互联网中的时延:处理时延.排队时延.传输时延.传播时延. 处理时延:检查分组首部和决定该分组导向何处的时间. 排队时延:分组在链路上等待传输的时延. 传输时延:分组经过路由器与交换机的过程的时延. ...
- Asp.net工作流workflow实战之给书签命名(四)
之前我们的书签名字是通过手动录入的方式,在实际开发中要在流程设计的时候定义好: namespace EazyBPMS.WorkFlow { public sealed class SetStepAct ...
- HTML 各种鼠标手势
<html> <body> <p>请把鼠标移动到单词上,可以看到鼠标指针发生变化:</p> <span style="cursor:au ...
- POJ3421(质因数分解)
X-factor Chains Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6501 Accepted: 2023 D ...
- [转载]Linux内核list_head学习(二)
前一篇文章讨论了list_head 结构的基本结构和实现原理,本文主要介绍一下实例代码. 自己如果想在应用程序中使用list_head 的相应操作(当然应该没人使用了,C++ STL提供了list 用 ...
- ES之二:Elasticsearch原理
Elasticsearch是最近两年异军突起的一个兼有搜索引擎和NoSQL数据库功能的开源系统,基于Java/Lucene构建.最近研究了一下,感觉 Elasticsearch 的架构以及其开源的生态 ...
- Oracle data guard学习
Oracle data guard学习:三思笔记 Data guard 1data guard结构: data guard是一个集合,由一个primary数据库(生产数据库)和一个或多个standby ...
- 五颜六色的记事本 Notepad2.cn
这是一款五颜六色的记事本,支持同时五种颜色的标签录入,可随意切换. 考虑到使用者的用眼舒适度,特意采用颜色对比明显并且色调柔和的配色方案,选择通用的微软雅黑字体作为编辑字体,字体工整便于识别. 针对使 ...
- python 三元表达式、列表推导式、生成器表达式
一 三元表达式.列表推导式.生成器表达式 一 三元表达式 name=input('姓名>>: ') res='mm' if name == 'hahah' else 'NB' print( ...