【洛谷2257】YY的GCD(莫比乌斯反演)
大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^MIsPrime(gcd(x,y))\)。
莫比乌斯反演
听说此题是莫比乌斯反演入门题?
一些定义
首先,我们可以定义\(f(d)\)和\(F(d)\)如下:
\]
\]
通过定义,不难发现:
\]
由于莫比乌斯反演的某些性质,我们又可以得到:
\]
公式化简
首先,我们应该不难想到:
\]
然后就是一波化简。
应该挺容易看出,由于\(f(p)\)的定义,上面的式子其实就相当于下面这个式子:
\]
然后是莫比乌斯反演:
\]
但是,这样有点难以处理。
于是,我们改成枚举\(\lfloor\frac dp\rfloor\),于是原式就变成了这样:
\]
将\(F(n)=\lfloor\frac Nn\rfloor\lfloor\frac Mn\rfloor\)代入进一步化简,可以得到:
\]
如果我们用\(G\)来表示\(d·p\),则\(d=\frac Gp\),原式就变成了这个样子:
\]
通过乘法交换律和乘法结合律,我们可以再一步转化,得:
\]
然后就可以\(O(n)\)求解了。
\(But\),多组数据,\(T\le 10000\)... ...
求解答案
首先,我们用定义一个\(g(n)\),它的定义如下:
\]
于是,我们便能将上面的式子进一步转化:
\]
然后,我们可以用除法分块。
不难发现,在一定范围内\(\lfloor\frac Ni\rfloor\)的值是保持不变的(\(\lfloor\frac Mi\rfloor\)同理),则\(\lfloor\frac NG\rfloor\lfloor\frac MG\rfloor\)其实最多只有\(\sqrt N+\sqrt M\),而对于\(\lfloor\frac NG\rfloor\lfloor\frac MG\rfloor\)相同的值,我们可以一起求解,于是就能想到用\(sum_i\)来表示\(\sum_{i=1}^i g(i)\),这样就能快速求解了。
代码
#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define uint unsigned int
#define LL long long
#define ull unsigned long long
#define swap(x,y) (x^=y,y^=x,x^=y)
#define abs(x) ((x)<0?-(x):(x))
#define INF 1e9
#define Inc(x,y) ((x+=(y))>=MOD&&(x-=MOD))
#define ten(x) (((x)<<3)+((x)<<1))
#define N 10000000
using namespace std;
int n,m;
class FIO
{
private:
#define Fsize 100000
#define tc() (FinNow==FinEnd&&(FinEnd=(FinNow=Fin)+fread(Fin,1,Fsize,stdin),FinNow==FinEnd)?EOF:*FinNow++)
#define pc(ch) (FoutSize<Fsize?Fout[FoutSize++]=ch:(fwrite(Fout,1,FoutSize,stdout),Fout[(FoutSize=0)++]=ch))
int f,FoutSize,OutputTop;char ch,Fin[Fsize],*FinNow,*FinEnd,Fout[Fsize],OutputStack[Fsize];
public:
FIO() {FinNow=FinEnd=Fin;}
inline void read(int &x) {x=0,f=1;while(!isdigit(ch=tc())) f=ch^'-'?1:-1;while(x=ten(x)+(ch&15),isdigit(ch=tc()));x*=f;}
inline void read_char(char &x) {while(isspace(x=tc()));}
inline void read_string(string &x) {x="";while(isspace(ch=tc()));while(x+=ch,!isspace(ch=tc())) if(!~ch) return;}
inline void write(LL x) {if(!x) return (void)pc('0');if(x<0) pc('-'),x=-x;while(x) OutputStack[++OutputTop]=x%10+48,x/=10;while(OutputTop) pc(OutputStack[OutputTop]),--OutputTop;}
inline void write_char(char x) {pc(x);}
inline void write_string(string x) {register int i,len=x.length();for(i=0;i<len;++i) pc(x[i]);}
inline void end() {fwrite(Fout,1,FoutSize,stdout);}
}F;
class Class_Mobius//莫比乌斯反演
{
private:
int Prime_cnt,mu[N+5],Prime[N+5];bool IsNotPrime[N+5];
public:
LL sum[N+5];
Class_Mobius()//预处理
{
register int i,j;
for(mu[1]=1,i=2;i<=N;++i)//求出莫比乌斯函数
{
if(!IsNotPrime[i]) Prime[++Prime_cnt]=i,mu[i]=-1;
for(j=1;j<=Prime_cnt&&i*Prime[j]<=N;++j)
if(IsNotPrime[i*Prime[j]]=true,i%Prime[j]) mu[i*Prime[j]]=-mu[i];else break;
}
for(j=1;j<=Prime_cnt;++j) for(i=Prime[j];i<=N;i+=Prime[j]) sum[i]+=mu[i/Prime[j]];//计算g(i)
for(i=1;i<=N;++i) sum[i]+=sum[i-1];//求前缀和
}
}Mobius;
int main()
{
register int i,nxt,T;register LL ans;F.read(T);
while(T--)
{
if(F.read(n),F.read(m),n>m) swap(n,m);
for(ans=0,i=1;i<=n;i=nxt+1) nxt=min(n/(n/i),m/(m/i)),ans+=1LL*(n/i)*(m/i)*(Mobius.sum[nxt]-Mobius.sum[i-1]);//除法分块
F.write(ans),F.write_char('\n');//输出答案
}
return F.end(),0;
}
【洛谷2257】YY的GCD(莫比乌斯反演)的更多相关文章
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
- 解题:洛谷2257 YY的GCD
题面 初见莫比乌斯反演 有一个套路是关于GCD的反演经常设$f(d)=\sum_{gcd(i,j)==d},g(d)=\sum_{d|gcd(i,j)}$,然后推推推 $\sum\limits_{i= ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
- [洛谷2257]YY的GCD 题解
整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需 ...
- 洛谷 2257 - YY的GCD
莫比乌斯反演半模板题 很容易可以得到 \[Ans = \sum\limits_{p \in prime} \sum\limits_{d = 1}^{\min (\left\lfloor\frac{a} ...
- 洛谷 P2257 YY的GCD
洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- 洛谷P2257 YY的GCD(莫比乌斯反演)
传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$g ...
- 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...
随机推荐
- 【转至hejinde的专栏】Axure RP 8最新激活码(可用注册码)
Licensee:米 业成 (STUDENT)Key:nFmqBBvEqdvbiUjy8NZiyWiRSg3yO+PtZ8c9wdwxWse4WprphvSu9sohAdpNnJK5 亲测可用
- springboot jpa mongodb 多条件分页查询
public Page<Recorded> getRecordeds(Integer page, Integer size, Recorded recorded) { if (page&l ...
- c# 手动实现 \u 转义字符。。效果。。。
string s ="\\u"+item.Icon; // item.Icon = UnicodeEncoding.Unicode.GetString(UnicodeEncodin ...
- Django基础(2)--模板自定义标签和过滤器,模板继承 (extend),Django的模型层-ORM简介
没整理完 昨日回顾: 视图函数: request对象 request.path 请求路径 request.GET GET请求数据 QueryDict {} request.POST POST请求数据 ...
- POJ - 3461 (kmp)
题目链接:http://poj.org/problem?id=3461 Oulipo Time Limit: 1000MS Memory Limit: 65536K Total Submissio ...
- HDU 5785 Interesting manacher + 延迟标记
题意:给你一个串,若里面有两个相邻的没有交集的回文串的话,设为S[i...j] 和 S[j+1...k],对答案的贡献是i*k,就是左端点的值乘上右端点的值. 首先,如果s[x1....j].s[x2 ...
- Django学习笔记(13)——Django的用户认证(Auth)组件,视图层和QuerySet API
用户认证组件的学习 用户认证是通过取表单数据根数据库对应表存储的值做比对,比对成功就返回一个页面,不成功就重定向到登录页面.我们自己写的话当然也是可以的,只不过多写了几个视图,冗余代码多,当然我们也可 ...
- DB2去重的几种方法
有两个意义上的重复记录,一是完全重复的记录,也即所有字段均重复的记录,二是部分关键字段重复的记录,比如Name字段重复,而其他字段不一定重复或都重复可以忽略. 例如下表:table1 用户办理套餐的记 ...
- Timer控制开始、停止例子【转】
public partial class Form1 : Form { static public bool flag; public Form1() ...
- log4net 最快速体验
本文供实习司机快速上手log4net最基本功能,共4步,3分钟搞定. 一.添加log4net.dll引用,可使用nuget安装或直接引用文件 二.添加配置 在app.config或web.config ...