C++11并发学习之三:线程同步(转载)
C++11并发学习之三:线程同步
1.<mutex> 头文件介绍
Mutex又称互斥量,C++ 11中与 Mutex 相关的类(包括锁类型)和函数都声明在 <mutex> 头文件中,所以如果你需要使用 std::mutex,就必须包含 <mutex> 头文件。
(1)Mutex系列类(四种)
std::mutex,最基本的 Mutex 类。
std::recursive_mutex,递归 Mutex 类。
std::time_mutex,定时 Mutex 类。
std::recursive_timed_mutex,定时递归 Mutex 类。
(2)Lock系列类(两种)
std::lock_guard,与 Mutex RAII 相关,方便线程对互斥量上锁。
std::unique_lock,与 Mutex RAII 相关,方便线程对互斥量上锁,但提供了更好的上锁和解锁控制。
(3)其他类型(结构体)
std::adopt_lock_t——它的常量对象定义为constexpr adopt_lock_t adopt_lock {};// constexpr 是 C++11 中的新关键字)
std::defer_lock_t——它的常量对象定义为constexpr defer_lock_t defer_lock {};// constexpr 是 C++11 中的新关键字)
std::try_to_lock_t——它的常量对象定义为constexpr try_to_lock_t try_to_lock {};// constexpr 是 C++11 中的新关键字)
(4)函数
std::try_lock,尝试同时对多个互斥量上锁。
std::lock,可以同时对多个互斥量上锁。
std::call_once,如果多个线程需要同时调用某个函数,call_once 可以保证多个线程对该函数只调用一次。
2.常用类型举例
(1)std::mutex类
☆构造函数,std::mutex不允许拷贝构造,也不允许 move 拷贝,最初产生的 mutex 对象是处于 unlocked 状态的。
☆lock(),调用线程将锁住该互斥量。线程调用该函数会发生下面 3 种情况:①如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前,该线程一直拥有该锁。②如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住。③如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。
☆unlock(), 解锁,释放对互斥量的所有权。
☆try_lock(),尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻塞。线程调用该函数也会出现下面 3 种情况:① 如果该互斥量当前没有被锁住,则该线程锁住互斥量,直到该线程调用 unlock 释放互斥量。②如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉。③如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。
不论是lock()还是try_lock()都需要和unlock()配套使用,下面举例说明lock()和try_lock()的区别。
- #include <thread>
- #include <iostream>
- #include <string>
- #include <chrono>
- #include <assert.h>
- #include <mutex>
- int counter=0;
- std::mutex mtx;
- void func()
- {
- for (int i=0; i<10000; ++i)
- {
- mtx.lock();
- ++counter;
- mtx.unlock();
- }
- }
- int main()
- {
- std::thread workerThreads[10];
- for (int i=0; i<10; ++i)
- {
- workerThreads[i] = std::thread(func);
- }
- for (auto& workerThread : workerThreads)
- {
- workerThread.join();
- }
- std::cout << counter << " successful increases of the counter"<<std::endl;
- return 0;
- }
由于lock()的阻塞特性,所以每个线程都统计了10000次,一共是10*10000=100000次。
- #include <thread>
- #include <iostream>
- #include <string>
- #include <chrono>
- #include <assert.h>
- #include <mutex>
- int counter=0;
- std::mutex mtx;
- void func()
- {
- for (int i=0; i<10000; ++i)
- {
- if (mtx.try_lock())
- {
- ++counter;
- mtx.unlock();
- }
- }
- }
- int main()
- {
- std::thread workerThreads[10];
- for (int i=0; i<10; ++i)
- {
- workerThreads[i] = std::thread(func);
- }
- for (auto& workerThread : workerThreads)
- {
- workerThread.join();
- }
- std::cout << counter << " successful increases of the counter"<<std::endl;
- return 0;
- }
由于try_lock()的非阻塞特性,如果当前互斥量被其他线程锁住,则当前try_lock()返回 false,此时counter并不会增加1。所以这十个线程的统计结果具有随机性,下次运行程序时,统计值不一定是16191。
(2).std::lock_guard和std::unique_lock类
std::lock_guard使用起来比较简单,除了构造函数外没有其他成员函数。
std::unique_lock除了lock_guard的功能外,提供了更多的成员函数,相对来说更灵活一些。这些成员函数包括lock,try_lock,try_lock_for,try_lock_until、unlock等。
std::unique_lock::lock——用它所管理的Mutex对象的 lock 函数。
std::unique_lock::try_lock——用它所管理的Mutex对象的 try_lock函数。
std::unique_lock::unlock——用它所管理的Mutex对象的 unlock函数。
这两个类相比使用std::mutex的优势在于不用配对使用,无需担心忘记调用unlock而导致的程序死锁。
- #include <thread>
- #include <iostream>
- #include <string>
- #include <chrono>
- #include <assert.h>
- #include <mutex>
- int counter=0;
- std::mutex mtx;
- void func()
- {
- for (int i=0; i<10000; ++i)
- {
- //将std::lock_guard替换成std::unique_lock,效果是一样的
- std::lock_guard<std::mutex> lck (mtx);
- ++counter;
- }
- }
- int main()
- {
- std::thread workerThreads[10];
- for (int i=0; i<10; ++i)
- {
- workerThreads[i] = std::thread(func);
- }
- for (auto& workerThread : workerThreads)
- {
- workerThread.join();
- }
- std::cout << counter << " successful increases of the counter"<<std::endl;
- return 0;
- }
std::uniqure_lock构造函数的第二个参数可以是std::defer_lock,std::try_to_lock或std::adopt_lock
- #include <thread>
- #include <iostream>
- #include <string>
- #include <chrono>
- #include <assert.h>
- #include <mutex>
- int counter=0;
- std::mutex mtx;
- void func()
- {
- for (int i=0; i<10000; ++i)
- {
- mtx.lock();
- //注意此时Tag参数为std::adopt_lock表明当前线程已经获得了锁,
- //此后mtx对象的解锁操作交由unique_lock对象lck来管理,在lck的生命周期结束之后,
- //mtx对象会自动解锁。
- std::unique_lock<std::mutex> lck(mtx,std::adopt_lock);
- ++counter;
- }
- }
- int main()
- {
- std::thread workerThreads[10];
- for (int i=0; i<10; ++i)
- {
- workerThreads[i] = std::thread(func);
- }
- for (auto& workerThread : workerThreads)
- {
- workerThread.join();
- }
- std::cout << counter << " successful increases of the counter"<<std::endl;
- return 0;
- }
- #include <chrono>
- #include <assert.h>
- #include <mutex>
- int counter=0;
- std::mutex mtx;
- void func()
- {
- for (int i=0; i<10000; ++i)
- {
- //注意此时Tag参数为std::defer_lock表明当前线程没有获得了锁,
- //需要通过lck的lock和unlock来加锁和解锁,
- std::unique_lock<std::mutex> lck(mtx,std::defer_lock);
- lck.lock();
- ++counter;
- lck.unlock();
- }
- }
- int main()
- {
- std::thread workerThreads[10];
- for (int i=0; i<10; ++i)
- {
- workerThreads[i] = std::thread(func);
- }
- for (auto& workerThread : workerThreads)
- {
- workerThread.join();
- }
- std::cout << counter << " successful increases of the counter"<<std::endl;
- return 0;
- }
参考链接:http://www.cnblogs.com/haippy/p/3346477.html
C++11并发学习之三:线程同步(转载)的更多相关文章
- AspectJ基础学习之三HelloWorld(转载)
AspectJ基础学习之三HelloWorld(转载) 一.创建项目 我们将project命名为:aspectjDemo.然后我们新建2个package:com.aspectj.demo.aspect ...
- Python并发编程-进程 线程 同步锁 线程死锁和递归锁
进程是最小的资源单位,线程是最小的执行单位 一.进程 进程:就是一个程序在一个数据集上的一次动态执行过程. 进程由三部分组成: 1.程序:我们编写的程序用来描述进程要完成哪些功能以及如何完成 2.数据 ...
- java SE学习之线程同步(详细介绍)
java程序中可以允许存在多个线程,但在处理多线程问题时,必须注意这样一个问题: 当两个或多个线程同时访问同一个变量,并且一些线程需要修改这个变量时,那么这个 ...
- Java提高班(三)并发中的线程同步与锁
乐观锁.悲观锁.公平锁.自旋锁.偏向锁.轻量级锁.重量级锁.锁膨胀...难理解?不存的!来,话不多说,带你飙车. 上一篇介绍了线程池的使用,在享受线程池带给我们的性能优势之外,似乎也带来了另一个问题: ...
- C++并发编成 03 线程同步
这一节主要讲讲线程同步的方式,C++ 11中提供了丰富的线程同步元语,如condition_variable,futrue,std::packaged_task<>,std::promis ...
- java并发编程:线程同步和锁
一.锁的原理 java中每个对象都有一个内置锁.当程序运行到非静态的synchronized同步方法上时,自动获得与正在执行代码类的当前实例(this)有关的锁.获得一个对象的锁也称为获取锁,当程序运 ...
- Java多线程学习总结--线程同步(2)
线程同步是为了让多个线程在共享数据时,保持数据的一致性.举个例子,有两个人同时取钱,假设用户账户余额是1000,第一个用户取钱800,在第一个用户取钱的同时,第二个用户取钱600.银行规定,用户不允许 ...
- java并发编程基础——线程同步
线程同步 一.线程安全问题 如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码.如果每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安 ...
- APUE学习笔记——11 线程同步、互斥锁、自旋锁、条件变量
线程同步 同属于一个进程的不同线程是共享内存的,因而在执行过程中需要考虑数据的一致性. 假设:进程有一变量i=0,线程A执行i++,线程B执行i++,那么最终i的取值是多少呢?似乎一定 ...
随机推荐
- POJ 2763 Housewife Wind(树链剖分)(线段树单点修改)
Housewife Wind Time Limit: 4000MS Memory Limit: 65536K Total Submissions: 10378 Accepted: 2886 D ...
- Python之端口扫描器编写
其实,写个扫描器也挺好玩的,牵涉到了RAW Socket编程,可以尽情地DIY数据包(当然,不符合数据包规则,比如checksum错误就没办法了),收获颇深.其中,我觉得用C语言写更有利于在编写过程中 ...
- [Usaco2010 Feb]Chocolate Buying
题目描述 贝西和其他奶牛们都喜欢巧克力,所以约翰准备买一些送给她们.奶牛巧克力专卖店里 有N种巧克力,每种巧克力的数量都是无限多的.每头奶牛只喜欢一种巧克力,调查显示, 有Ci头奶牛喜欢第i种 ...
- unity3d 场景配置文件生成代码
using UnityEngine; using UnityEditor; using System.IO; using System; using System.Text; using System ...
- 细说JavaScript对象(3):hasOwnProperty
判断一个属性是定义在对象本身而不是继承自原型链,我们需要使用从 Object.prototype 继承而来的 hasOwnProperty 方法. hasOwnProperty 方法是 JavaScr ...
- 用DVD镜像离线安装Debian的软件包
先介绍一下环境: 虚拟机:debian7.2.0 主机: Win7 方法一: 由于有时候无法联网就需要离线安装软件包,可以把debian官网上列出的几个DVD镜像都下下来,其实主要是DVD1,这样就不 ...
- form表单提交之前判断
1.使用onsubmit方法 <form name="Form" action="t" method="post" onsubmit= ...
- 基于物品过滤的Slope One 算法
Slope One 算法是由 Daniel Lemire 教授在 2005 年提出的一个 Item-Based 推荐算法. 他的主要优点是简单,易于扩展.实际上有多个Slope One算法,在此主要学 ...
- linux selenium运行chrome
chrome版本要和chromedriver版本匹配才能正常运行.
- WEB-INF有关的目录路径问题总结
1.资源文件只能放在WebContent下面,如 CSS,JS,image等.放在WEB-INF下引用不了. 2.页面放在WEB-INF目录下面,这样可以限制访问,提高安全性.如JSP,html 3. ...