圆方树&广义圆方树[学习笔记]
仙人掌
圆方树是用来解决仙人掌图的问题的,那什么是仙人掌图呢?

如图,不存在边同时属于多个环的无向连通图是一棵仙人掌
圆方树
定义
原先的仙人掌图,通过一些奇妙的方法,可以转化为一棵由圆点,方点和树边构成的树——圆方树,具体构建方法如下
原仙人掌的每一个点为圆点,对于每个环都新建一个方点,方点向环上的每一个圆点连边,就构成了圆方树。
构建方法
用\(tarjan\)算法求出点双,对于每一个点双新建一个方点与环上的点相连,注意一条边连接两个点的不算点双。
代码:
void tarjan(int x,int f){
dfn[x]=low[x]=++tim;
st[++tot]=x;
for(int i=G.head[x];i;i=G.nex[i])
if(G.v[i]!=f){
int y=G.v[i];
if(!dfn[y]){
tarjan(y,x);
low[x]=min(low[x],low[y]);
if(low[y]==dfn[x]){
siz++;
while(st[tot]!=y)
T.add(n+siz,st[tot--]);
T.add(n+siz,st[tot--]);
T.add(n+siz,x);
}
}
else
if(y!=f)
low[x]=min(low[x],dfn[y]);
}
}
在别人的博客里学到了一种更妙的构造方法:
记\(ring[i]\)表示点i是否在一个环里。对于某个点x,我们要从它遍历到它的子节点y时,先将\(ring[x]\)赋为0;然后,我们在\(tarjan\)的时候,若有某个点x,对于其一条连向点y的出边,满足\(dfn[y]<dfn[x]\),则表明y为其祖先,我们就找到了一个环,于是建方点、连新边,并使该环中每个节点的\(ring\)变为1;于是,回溯回那个点\(x\),若\(ring\)依然\(=0\),则表明那个y没有与之形成环,故边\((x,y)\)是树边,在\(T\)中连上它。
以及构造的代码:
void tarjan(int x){
dfn[x]=++tim;
for(int i=G.head[x];i;i=G.nex[i])
if(f[x]!=G.v[i]){
int y=G.v[i];
if(dfn[y]){
f[y]=x;
ring[x]=0;
tarjan(y);
if(!ring[x]) T.add(x,y);
}
else
if(dfn[y]<dfn[x]){
int z=x;
tot++;
while(z!=y){
T.add(z,tot);
ring[z]=1;
z=f[z];
}
T.add(tot,y);
ring[y]=1;
}
}
}
广义圆方树
普通圆方树只能解决仙人掌图上的问题,而广义圆方树则可以将所有无向图转化为圆方树处理。
广义圆方树性质:圆点方点相间,不存在两个‘’相同形状‘’的点相连。
构造方法:
把一条边连接两个点也看成一个点双,原本两个圆点有一条边相连,现在在中间插入一个方点间隔开就好了
(从别人blog搞来的图片)
代码
void tarjan(int x,int f){
dfn[x]=low[x]=++tim;
st[++tot]=x;
for(int i=G.head[x];i;i=G.nex[i])
if(G.v[i]!=f){
int y=G.v[i];
if(!dfn[y]){
tarjan(y,x);
low[x]=min(low[x],low[y]);
if(low[y]>=dfn[x]){
siz++;
while(st[tot]!=y)
T.add(n+siz,st[tot--]);
T.add(n+siz,st[tot--]);
T.add(n+siz,x);
}
}
else
low[x]=min(low[x],dfn[y]);
}
}
例题
比较晚了,先整理这些,以后再补吧
圆方树&广义圆方树[学习笔记]的更多相关文章
- 设备树(device tree)学习笔记
作者信息 作者:彭东林 邮箱:pengdonglin137@163.com 1.反编译设备树 在设备树学习的时候,如果可以看到最终生成的设备树的内容,对于我们学习设备树以及分析问题有很大帮助.这里我们 ...
- 设备树(device tree)学习笔记【转】
转自:https://www.cnblogs.com/pengdonglin137/p/4495056.html 阅读目录(Content) 1.反编译设备树 2.分析工具fdtdump 3.Linu ...
- 回文树/回文自动机(PAM)学习笔记
回文树(也就是回文自动机)实际上是奇偶两棵树,每一个节点代表一个本质不同的回文子串(一棵树上的串长度全部是奇数,另一棵全部是偶数),原串中每一个本质不同的回文子串都在树上出现一次且仅一次. 一个节点的 ...
- P4197 Peaks [克鲁斯卡尔重构树 + 主席树][克鲁斯卡尔重构树学习笔记]
Problem 在\(Bytemountains\)有\(n\)座山峰,每座山峰有他的高度\(h_i\) .有些山峰之间有双向道路相连,共\(M\)条路径,每条路径有一个困难值,这个值越大表示越难走, ...
- 树堆(Treap)学习笔记 2020.8.12
如果一棵二叉排序树的节点插入的顺序是随机的,那么这样建立的二叉排序树在大多数情况下是平衡的,可以证明,其高度期望值为 \(O( \log_2 n )\).即使存在一些极端情况,但是这种情况发生的概率很 ...
- 仙人掌&圆方树学习笔记
仙人掌&圆方树学习笔记 1.仙人掌 圆方树用来干啥? --处理仙人掌的问题. 仙人掌是啥? (图片来自于\(BZOJ1023\)) --也就是任意一条边只会出现在一个环里面. 当然,如果你的图 ...
- 【题解】Uoj#30 Tourist(广义圆方树+树上全家桶)
[题解]Uoj#30 Tourist(广义圆方树+树上全家桶) 名字听起来很霸气其实算法很简单.... 仙人掌上的普通圆方树是普及题,但是广义圆方树虽然很直观但是有很多地方值得深思 说一下算法的流程: ...
- CF487E Tourists + 圆方树学习笔记(圆方树+树剖+线段树+multiset)
QWQ果然我已经什么都学不会的人了. 这个题目要求的是图上所有路径的点权和!QWQ(我只会树上啊!) 这个如果是好啊 这时候就需要 圆方树! 首先在介绍圆方树之前,我们先来一点简单的前置知识 首先,我 ...
- 图论杂项细节梳理&模板(虚树,圆方树,仙人掌,欧拉路径,还有。。。)
orzYCB 虚树 %自为风月马前卒巨佬% 用于优化一类树形DP问题. 当状态转移只和树中的某些关键点有关的时候,我们把这些点和它们两两之间的LCA弄出来,以点的祖孙关系连成一棵新的树,这就是虚树. ...
随机推荐
- svn解决冲突和commit
当使用svn出现 svn: E155015: 提交失败(细节如下):svn: E155015: 提交终止: “/home/test.file” 处于冲突状态 解决办法: svn resolved /h ...
- 安装java运行环境
1.查看java安装版本 执行命令java -version查看已安装java运行环境信息. 2.下载JDK 到sun官网下载需要的jdk版本,地址为:http://www.oracle.com/te ...
- 转:Exception loading sessions from persistent storage
直用tomcat一段时间都正常无事,最近一次启动tomcat就发生以下异常: 严重: IOException while loading persisted sessions: java.io.EOF ...
- NUTCH2.3 hadoop2.7.1 hbase1.0.1.1 solr5.2.1部署(三)
Precondition: hadoop 2.7.1 hbase 0.98.13 solr 5.2.1 / Apache Solr 4.8.1 http://archive.apache.org ...
- 不同手机根据坐标计算控件、图片的像素,px 与 dp, sp换算公式?
参考该帖子:http://www.cnblogs.com/bluestorm/p/3640786.html PPI = Pixels per inch,每英寸上的像素数,即 "像素密度&qu ...
- Weka关联规则分析
购物篮分析: Apriori算法: 参数设置: 1.car 如果设为真,则会挖掘类关联规则而不是全局关联规则. 2. classindex 类属性索引.如果设置为-1,最后的属性被当做类属性. 3. ...
- Linux安装php-7.0.16,完成php和apache的配置
Linux安装php-7.0.16,完成php和apache的配置 版本:php-7.0.16.tar.gz,libxml2-2.9.2.tar.gz(php需要它的支持,首先安装它) 说明 ...
- k8s集群日志
硬件环境: 三台虚拟机, 10.10.20.203 部署docker.etcd.flannel.kube-apiserver.kube-controller-manager.kube-schedule ...
- windows 10右键项添加Notepad++
1.打开注册表编辑器,开始->运行->regedit. 2.在HKEY_CLASSSES_ROOT→ * → Shell 下,在Shell下,新建项命名为Open With Notepad ...
- Ajax主要用来完成哪些工作?
AJAX 是与服务器交换数据并更新部分网页的艺术,在不重新加载整个页面的情况下. 它使用 JavaScript 在 web 浏览器与 web 服务器之间来发送和接收数据. ajax主要用于在页面内容加 ...