仙人掌

圆方树是用来解决仙人掌图的问题的,那什么是仙人掌图呢?

如图,不存在边同时属于多个环无向连通图是一棵仙人掌



圆方树

定义

原先的仙人掌图,通过一些奇妙的方法,可以转化为一棵由圆点,方点和树边构成的树——圆方树,具体构建方法如下

原仙人掌的每一个点为圆点,对于每个环都新建一个方点,方点向环上的每一个圆点连边,就构成了圆方树。


构建方法

用\(tarjan\)算法求出点双,对于每一个点双新建一个方点与环上的点相连,注意一条边连接两个点的不算点双。

代码:


void tarjan(int x,int f){
dfn[x]=low[x]=++tim;
st[++tot]=x;
for(int i=G.head[x];i;i=G.nex[i])
if(G.v[i]!=f){
int y=G.v[i];
if(!dfn[y]){
tarjan(y,x);
low[x]=min(low[x],low[y]);
if(low[y]==dfn[x]){
siz++;
while(st[tot]!=y)
T.add(n+siz,st[tot--]);
T.add(n+siz,st[tot--]);
T.add(n+siz,x);
}
}
else
if(y!=f)
low[x]=min(low[x],dfn[y]);
}
}

在别人的博客里学到了一种更妙的构造方法:

记\(ring[i]\)表示点i是否在一个环里。对于某个点x,我们要从它遍历到它的子节点y时,先将\(ring[x]\)赋为0;然后,我们在\(tarjan\)的时候,若有某个点x,对于其一条连向点y的出边,满足\(dfn[y]<dfn[x]\),则表明y为其祖先,我们就找到了一个环,于是建方点、连新边,并使该环中每个节点的\(ring\)变为1;于是,回溯回那个点\(x\),若\(ring\)依然\(=0\),则表明那个y没有与之形成环,故边\((x,y)\)是树边,在\(T\)中连上它。

以及构造的代码:


void tarjan(int x){
dfn[x]=++tim;
for(int i=G.head[x];i;i=G.nex[i])
if(f[x]!=G.v[i]){
int y=G.v[i];
if(dfn[y]){
f[y]=x;
ring[x]=0;
tarjan(y);
if(!ring[x]) T.add(x,y);
}
else
if(dfn[y]<dfn[x]){
int z=x;
tot++;
while(z!=y){
T.add(z,tot);
ring[z]=1;
z=f[z];
}
T.add(tot,y);
ring[y]=1;
}
}
}


广义圆方树

普通圆方树只能解决仙人掌图上的问题,而广义圆方树则可以将所有无向图转化为圆方树处理。

广义圆方树性质:圆点方点相间,不存在两个‘’相同形状‘’的点相连。

构造方法:

把一条边连接两个点也看成一个点双,原本两个圆点有一条边相连,现在在中间插入一个方点间隔开就好了

(从别人blog搞来的图片)

代码


void tarjan(int x,int f){
dfn[x]=low[x]=++tim;
st[++tot]=x;
for(int i=G.head[x];i;i=G.nex[i])
if(G.v[i]!=f){
int y=G.v[i];
if(!dfn[y]){
tarjan(y,x);
low[x]=min(low[x],low[y]);
if(low[y]>=dfn[x]){
siz++;
while(st[tot]!=y)
T.add(n+siz,st[tot--]);
T.add(n+siz,st[tot--]);
T.add(n+siz,x);
}
}
else
low[x]=min(low[x],dfn[y]);
}
}


例题

Luogu 4320

比较晚了,先整理这些,以后再补吧

圆方树&广义圆方树[学习笔记]的更多相关文章

  1. 设备树(device tree)学习笔记

    作者信息 作者:彭东林 邮箱:pengdonglin137@163.com 1.反编译设备树 在设备树学习的时候,如果可以看到最终生成的设备树的内容,对于我们学习设备树以及分析问题有很大帮助.这里我们 ...

  2. 设备树(device tree)学习笔记【转】

    转自:https://www.cnblogs.com/pengdonglin137/p/4495056.html 阅读目录(Content) 1.反编译设备树 2.分析工具fdtdump 3.Linu ...

  3. 回文树/回文自动机(PAM)学习笔记

    回文树(也就是回文自动机)实际上是奇偶两棵树,每一个节点代表一个本质不同的回文子串(一棵树上的串长度全部是奇数,另一棵全部是偶数),原串中每一个本质不同的回文子串都在树上出现一次且仅一次. 一个节点的 ...

  4. P4197 Peaks [克鲁斯卡尔重构树 + 主席树][克鲁斯卡尔重构树学习笔记]

    Problem 在\(Bytemountains\)有\(n\)座山峰,每座山峰有他的高度\(h_i\) .有些山峰之间有双向道路相连,共\(M\)条路径,每条路径有一个困难值,这个值越大表示越难走, ...

  5. 树堆(Treap)学习笔记 2020.8.12

    如果一棵二叉排序树的节点插入的顺序是随机的,那么这样建立的二叉排序树在大多数情况下是平衡的,可以证明,其高度期望值为 \(O( \log_2 n )\).即使存在一些极端情况,但是这种情况发生的概率很 ...

  6. 仙人掌&圆方树学习笔记

    仙人掌&圆方树学习笔记 1.仙人掌 圆方树用来干啥? --处理仙人掌的问题. 仙人掌是啥? (图片来自于\(BZOJ1023\)) --也就是任意一条边只会出现在一个环里面. 当然,如果你的图 ...

  7. 【题解】Uoj#30 Tourist(广义圆方树+树上全家桶)

    [题解]Uoj#30 Tourist(广义圆方树+树上全家桶) 名字听起来很霸气其实算法很简单.... 仙人掌上的普通圆方树是普及题,但是广义圆方树虽然很直观但是有很多地方值得深思 说一下算法的流程: ...

  8. CF487E Tourists + 圆方树学习笔记(圆方树+树剖+线段树+multiset)

    QWQ果然我已经什么都学不会的人了. 这个题目要求的是图上所有路径的点权和!QWQ(我只会树上啊!) 这个如果是好啊 这时候就需要 圆方树! 首先在介绍圆方树之前,我们先来一点简单的前置知识 首先,我 ...

  9. 图论杂项细节梳理&模板(虚树,圆方树,仙人掌,欧拉路径,还有。。。)

    orzYCB 虚树 %自为风月马前卒巨佬% 用于优化一类树形DP问题. 当状态转移只和树中的某些关键点有关的时候,我们把这些点和它们两两之间的LCA弄出来,以点的祖孙关系连成一棵新的树,这就是虚树. ...

随机推荐

  1. Yandex.Algorithm 2011 A. Double Cola

    1.题目描写叙述:点击打开链接 2.解题思路:本题是一道找规律的数学题,通过题意描写叙述不难知道,相当于有5棵二叉树构成了一个森林,须要你按层次遍历找到第n个人是谁. 观察后不难发现,如果最開始的一层 ...

  2. stage3D基础五-----Working with 3D cameras(转)

    原文地址:http://www.adobe.com/cn/devnet/flashplayer/articles/3d-cameras.html 原文是英文的,这里就不贴了,内容主要介绍直接使用相机坐 ...

  3. 自动测试工具agitarOne 初体验之-MockingBird的使用

    大名鼎鼎的AgitarOne就不用解释了,在昨天的随笔中有一些解释,今天主要说说Agitar 中Mockingbird的使用.          为了提高测试代 码的Coverage,仅仅靠Agita ...

  4. Angular Material表单提交及验证

    AngularJS中一些表单验证属性: 修改过的表单,只要用户修改过表单,无论输入是否通过验证,该值都将返回false{formName}.{inputFieldName}.$dirty 合法的表单, ...

  5. MHA常用命令

    .查看ssh登陆是否成功 masterha_check_ssh --conf=/etc/masterha/app1.cnf .查看复制是否建立好 masterha_check_repl --conf= ...

  6. Pycharm context menu disable RUN option

    这个问题很坑.正常来说一个文件右键出来的是 Run 选项, 可是近期几个文件都是 Unititest 的測试选项,每次要执行的时候都要手工去配置Run Option,在尝试了: 0. 重置IDE配置 ...

  7. java 对象占用内存查看 以及JVM级别 方法修改等

    public interface Instrumentation 此类提供检测 Java 编程语言代码所需的服务.检测是向方法中添加字节码,以搜集各种工具所使用的数据.由于更改完全是进行添加,所以这些 ...

  8. iOS - 富文本

    iOS--NSAttributedString超全属性详解及应用(富文本.图文混排)   ios项目中经常需要显示一些带有特殊样式的文本,比如说带有下划线.删除线.斜体.空心字体.背景色.阴影以及图文 ...

  9. Windows环境下搭建SVN服务器

    使用 VisualSVN Server来实现主要的 SVN功能则要比使用原始的 SVN和Apache相配合来实现源代码的 SVN管理简单的多,下面就看看详细的说明. VisualSVN Server的 ...

  10. java中业务接口

    今天写完业务层在抽取接口的时候脑子里突然产生了一个问题:抽取接口到底有什么用呢? 在刚刚学习接口的时候知道接口是为了实现java的多继承,但是现在每一个业务类都要抽取一个接口,每当该类需要增加方法的时 ...