题目链接

https://vjudge.net/problem/CodeForces-1061D

题面

Description

There are nn TV shows you want to watch. Suppose the whole time is split into equal parts called "minutes". The i-th of the shows is going from li-th to ri-th minute, both ends inclusive.

You need a TV to watch a TV show and you can't watch two TV shows which air at the same time on the same TV, so it is possible you will need multiple TVs in some minutes. For example, if segments [li,ri] and [lj,rj] intersect, then shows i and j can't be watched simultaneously on one TV.

Once you start watching a show on some TV it is not possible to "move" it to another TV (since it would be too distracting), or to watch another show on the same TV until this show ends.

There is a TV Rental shop near you. It rents a TV for xx rupees, and charges y (y<x) rupees for every extra minute you keep the TV. So in order to rent a TV for minutes [a;b] you will need to pay x+y⋅(b−a)

You can assume, that taking and returning of the TV doesn't take any time and doesn't distract from watching other TV shows. Find the minimum possible cost to view all shows. Since this value could be too large, print it modulo \(10^9+7\).

Input

The first line contains integers n, x and y (\(1≤n≤10^5 , 1≤y<x≤10^9\)) — the number of TV shows, the cost to rent a TV for the first minute and the cost to rent a TV for every subsequent minute.

Each of the next n lines contains two integers li and ri (\(1≤li≤ri≤10^9\)) denoting the start and the end minute of the i-th TV show.

Output

Print exactly one integer — the minimum cost to view all the shows taken modulo 109+7109+7.

Examples

Input

5 4 3
1 2
4 10
2 4
10 11
5 9

Output

60

Input

6 3 2
8 20
6 22
4 15
20 28
17 25
20 27

Output

142

Input

2 1000000000 2
1 2
2 3

Output

999999997

Note

In the first example, the optimal strategy would be to rent 33 TVs to watch:

  • Show [1,2] on the first TV,
  • Show [4,10] on the second TV,
  • Shows [2,4],[5,9],[10,11] on the third TV.

This way the cost for the first TV is 4+3⋅(2−1)=7, for the second is 4+3⋅(10−4)=22 and for the third is 4+3⋅(11−2)=31, which gives 6060 int total.

In the second example, it is optimal watch each show on a new TV.

In third example, it is optimal to watch both shows on a new TV. Note that the answer is to be printed modulo \(10^9+7\)

题意

给定 n 个电视节目和两个参数 x,y。你想要看全部的电视节目,但是同一个电视机同一个时刻只能播放一个电视节目,所以你只能多租赁电视机。在时间 [l,r] 租赁一台电视机的花费是 x + y (r−l)。一台电视机不可以在节目没有播放完时中断播放,播放时间包括r,也就是说如果一个节目在r时结束,另一个节目在r时开始时,这台电视机不能给刚开始的节目用。求最小花费。答案对 1e9+7 取模。

题解

首先我们把电视节目排序,排序按左端点小的在前,左端点相同时按右端点小的在前,因为靠前的节目肯定要先看,然后我们用一个multiset维护当前已经有的电视机的使用结束时间,首先对于第一个节目,此时还没有电视机,肯定要先买一台电视机,加上相应的花费,然后这台电视机在\(r_1\)时使用结束,set中有一台电视机的信息

然后从2到n开始循环,每次循环找到一台电视机的使用结束时间比这个节目的开始时间早,离这个节目开始最近的电视,没有的话就要再租一台电视机,如果有的话,就要判断一下,看是使用已有的电视机比较便宜还是再租一台比较便宜,如果使用已有电视机比较便宜的话,那么就要把这台电视机的结束时间更新到这次节目的结束时间,如果再租一台比较便宜,就要新加入一台使用结束时间在这次节目结束时间的电视机,同时计算花费,这样一直贪心选取计算答案即可。

为什么要这么贪心呢,因为如果在一个节目开始时间之前有多台电视机可以继续使用的话,结束时间更早的电视机肯定不如结束时间较晚的电视机优,因为它要花费更多的单位时间的租金。

至于找到结束时间最近的电视机,就直接使用\(lower\_bound\)即可,找到第一个大于等于的,再-1就是比它小的。

代码有点丑

AC代码

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <set>
#define N 100050
using namespace std;
typedef long long ll;
const int p = (int)1e9 + 7;
struct node {
ll l, r;
bool operator < (const node &b) const {
if (l == b.l) return r < b.r;
else return l < b.l;
}
} a[N];
int main() {
multiset<ll> s;
ll n, x, y;
scanf("%lld%lld%lld", &n, &x, &y);
for (int i = 1; i <= n; i++) {
scanf("%lld%lld", &a[i].l, &a[i].r);
}
sort (a + 1, a + n + 1);
s.insert(a[1].r);
multiset<ll>::iterator it;
ll ans = (x + y * (a[1].r - a[1].l) % p) % p;
for (int i = 2; i <= n; i++) {
it = s.lower_bound(a[i].l);
if (it == s.begin()) {
ans = (ans + x + y * (a[i].r - a[i].l) % p) % p;
s.insert(a[i].r);
}
else {
it--;
while (a[i].l == *it && it != s.begin()) {
it--;
}
if (*it == a[i].l) {
ans = (ans + x + y * (a[i].r - a[i].l) % p) % p;
}
else {
if ((a[i].l - *it) * y < x) {
ans = (ans + (a[i].r - *it) * y % p) % p;
s.erase(it);
}
else {
ans = (ans + x + (a[i].r - a[i].l) * y % p) % p;
}
}
s.insert(a[i].r);
}
}
cout << ans % p << endl;
return 0;
}

CodeForces-1061D TV Shows的更多相关文章

  1. Codeforces Round #523 (Div. 2) D. TV Shows

    传送门 https://www.cnblogs.com/violet-acmer/p/10005351.html 题意: 有n个节目,每个节目都有个开始时间和结束时间. 定义x,y分别为租电视需要的花 ...

  2. Codeforces Round #523 (Div. 2) D. TV Shows 模拟(多重集 先把所有区间加入多重集合)+贪心+二分

    题意:给出n个电视节目的起始和结束时间  并且租一台电视需要x +y*(b-a)  [a,b]为时段 问完整看完电视节目的最小花费是多少 思路:贪心的思想 情况1 如果新租一台电视的花费<=在空 ...

  3. 【codeforces】【Round#523D】TV shows

    题意:n个节目,每个节目的播放时间为[li,ri],你需要选择一些电视机全部播放这些节目,一台电视机不能同时播放多个节目,选择一个新的电视机代价为x , 如果某台电视机的使用时间为[Li,Ri]需要付 ...

  4. 【贪心】【CF1061D】 TV Shows

    Description 给定 \(n\) 个电视节目和两个参数 \(x,y\).你想要看全部的电视节目,但是同一个电视机同一个时刻只能播放一个电视节目,所以你只能多租赁电视机.在时间 \([l,r]\ ...

  5. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B2. TV Subscriptions (Hard Version)

    链接: https://codeforces.com/contest/1247/problem/B2 题意: The only difference between easy and hard ver ...

  6. CodeForces - 1097F:Alex and a TV Show (bitset & 莫比乌斯容斥)

    Alex decided to try his luck in TV shows. He once went to the quiz named "What's That Word?!&qu ...

  7. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B. TV Subscriptions 尺取法

    B2. TV Subscriptions (Hard Version) The only difference between easy and hard versions is constraint ...

  8. Codeforces Round #523 (Div. 2)

    Codeforces Round #523 (Div. 2) 题目一览表 来源 考察知识点 完成时间 A Coins cf 贪心(签到题) 2018.11.23 B Views Matter cf 思 ...

  9. 10 Best TV Series Based On Hacking And Technology

    Technology is rapidly becoming the key point in human lives. Here we have discussed top TV shows whi ...

随机推荐

  1. Java中JSON字符串与java对象的互换实例详解

    这篇文章主要介绍了在java中,JSON字符串与java对象的相互转换实例详解,非常不错,具有参考借鉴价值,需要的朋友可以参考下 在开发过程中,经常需要和别的系统交换数据,数据交换的格式有XML.JS ...

  2. kiiti分割的数据及其处理

    kitti和cityscape的gt的分割不太一样,下边缘不再是从黑色开始的,而是直接是类别 red,green,blue = img_gt[i,j] 1.道路的颜色(紫色):128 64 128 2 ...

  3. 【javascript】ajax 基础

    什么是 ajax ajax 即“Asynchronous JavaScript and XML”(异步 JavaScript 和 XML),也就是无刷新数据读取. http 请求 首先需要了解 htt ...

  4. LeetCode706. Design HashMap

    题目  不使用任何内建的哈希表库设计一个哈希映射 具体地说,你的设计应该包含以下的功能 put(key, value):向哈希映射中插入(键,值)的数值对.如果键对应的值已经存在,更新这个值. get ...

  5. 牛客小白月赛2 A 数字方阵【随机】【找规律】

    链接:https://www.nowcoder.com/acm/contest/86/A 题目描述  总是对数字的神秘感感到好奇.这次,他在纸上写下了  个从 到 的数字,并把这些数字排成了 的方阵. ...

  6. Centos下使用Docker部署asp.net core项目

    本文讲述 CentOS 系统 Docker 中部署 asp.net core开源项目 abp 的过程 步骤 1. 拉取 asp.net core 基础镜像 docker pull microsoft/ ...

  7. contextmanager 的基本使用

    from contextlib import contextmanager 简化 With 语句: class MyResource:    def query(self):        print ...

  8. python datetime offset-aware与offset-navie相互转换

    python datetime offset-aware与offset-navie相互转换 2016年11月13日 16:20:43 阅读数:2393 有时,我们使用python 的datetime模 ...

  9. 路由vue-router基础

    目录 1. 基本例子 2. 动态路由匹配 3. 嵌套路由 4. 编程式导航 5. 命名路由 6. 命名视图 7. 重定向和别名 8. 向路由组件传递props 9. HTML5 History模式 官 ...

  10. vue计算属性和观察者

    1. 计算属性 模板内的表达式非常便利,但在模板中放入太多的逻辑会让模板过重且难以维护,所有就有了计算属性 例子: //html代码 <div id="example"> ...