转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud

Beauty Contest
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 31214   Accepted: 9681

Description

Bessie, Farmer John's prize cow, has just won first place in a bovine beauty contest, earning the title 'Miss Cow World'. As a result, Bessie will make a tour of N (2 <= N <= 50,000) farms around the world in order to spread goodwill between farmers and their cows. For simplicity, the world will be represented as a two-dimensional plane, where each farm is located at a pair of integer coordinates (x,y), each having a value in the range -10,000 ... 10,000. No two farms share the same pair of coordinates.

Even though Bessie travels directly in a straight line between pairs of farms, the distance between some farms can be quite large, so she wants to bring a suitcase full of hay with her so she has enough food to eat on each leg of her journey. Since Bessie refills her suitcase at every farm she visits, she wants to determine the maximum possible distance she might need to travel so she knows the size of suitcase she must bring.Help Bessie by computing the maximum distance among all pairs of farms.

Input

* Line 1: A single integer, N

* Lines 2..N+1: Two space-separated integers x and y specifying coordinate of each farm

Output

* Line 1: A single integer that is the squared distance between the pair of farms that are farthest apart from each other. 

Sample Input

4
0 0
0 1
1 1
1 0

Sample Output

2

Hint

Farm 1 (0, 0) and farm 3 (1, 1) have the longest distance (square root of 2) 

求平面的最远点对。

由于点的范围在-10000到10000之间,所以取完凸包后,凸包上的点的数目并不会很多,不会超过根号M个,所以可以求完凸包之后直接暴力枚举凸包上的点来做。

 /**
* code generated by JHelper
* More info: https://github.com/AlexeyDmitriev/JHelper
* @author xyiyy @https://github.com/xyiyy
*/ #include <iostream>
#include <fstream> //#####################
//Author:fraud
//Blog: http://www.cnblogs.com/fraud/
//#####################
//#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <sstream>
#include <ios>
#include <iomanip>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <list>
#include <queue>
#include <deque>
#include <stack>
#include <set>
#include <map>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <climits>
#include <cctype> using namespace std;
#define rep(X, N) for(int X=0;X<N;X++) const double EPS = 1e-; double add(double a, double b) {
if (abs(a + b) < EPS * (abs(a) + abs(b)))return ;
return a + b;
} struct P {
double x, y; P() { } P(double x, double y) : x(x), y(y) { } P operator+(P p) {
return P(add(x, p.x), add(y, p.y));
} P operator-(P p) {
return P(add(x, -p.x), add(y, -p.y));
} double dot(P p) {
return add(x * p.x, y * p.y);
} double det(P p) {
return add(x * p.y, -y * p.x);
}
}; double dist(P p, P q) {
return (p - q).dot(p - q);
} bool cmp_x(const P &p, const P &q) {
if (p.x != q.x)return p.x < q.x;
return p.y < q.y;
} vector<P> convex_hull(P *ps, int n) {
sort(ps, ps + n, cmp_x);
int k = ;
vector<P> qs(n * );
for (int i = ; i < n; qs[k++] = ps[i++]) {
while (k > && (qs[k - ] - qs[k - ]).det(ps[i] - qs[k - ]) < EPS)k--;
}
for (int i = n - , t = k; i >= ; qs[k++] = ps[i--]) {
while (k > t && (qs[k - ] - qs[k - ]).det(ps[i] - qs[k - ]) < EPS)k--;
}
qs.resize(k - );
return qs;
} const int MAXN = ; class poj2187 {
public:
void solve() {
int n;
scanf("%d",&n);//in >> n;
P *ps = new P[MAXN];
rep(i, n) {
scanf("%lf%lf",&ps[i].x,&ps[i].y);//in >> ps[i].x >> ps[i].y;
}
vector<P> qs = convex_hull(ps, n);
double res = ;
rep(i, qs.size()) {
rep(j, i) {
res = max(res, dist(qs[i], qs[j]));
}
}
printf("%.0f\n",res);
//out << fixed << setprecision(0) << res << endl;
}
}; int main() {
//std::ios::sync_with_stdio(false);
//std::cin.tie(0);
poj2187 solver;
//std::istream &in(std::cin);
// std::ostream &out(std::cout);
solver.solve();
return ;
}

代码君

对于凸包上最远的两个点,其实可以使用旋转卡壳来做,其实旋转卡壳的思想是比较容易理解的,首先找到对踵点对,

不明白的可以先看一下以下链接

https://en.wikipedia.org/wiki/Rotating_calipers

然后在考虑转移的情况,在凸包上,对于一个点和其他所有点的距离,绕一圈,正好构成一个单峰函数,那么,对踵点对就一定是在变小的那个地方,所以这样想通后只要找出所有的对踵点对间距离的最大值,这样原来需要在凸包上枚举所有点的O(n^2)的方法就可以通过旋转卡壳改进成O(n)了,外加上前面求凸包O(nlogn)的复杂度,这道题就可以轻松切掉了。

下面附上C++版和Java版的代码

C++:

 /**
* code generated by JHelper
* More info: https://github.com/AlexeyDmitriev/JHelper
* @author xyiyy @https://github.com/xyiyy
*/ #include <iostream>
#include <fstream> //#####################
//Author:fraud
//Blog: http://www.cnblogs.com/fraud/
//#####################
//#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <sstream>
#include <ios>
#include <iomanip>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <list>
#include <queue>
#include <deque>
#include <stack>
#include <set>
#include <map>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <climits>
#include <cctype> using namespace std;
#define rep(X, N) for(int X=0;X<N;X++) //
// Created by xyiyy on 2015/8/10.
// #ifndef JHELPER_EXAMPLE_PROJECT_P_HPP
#define JHELPER_EXAMPLE_PROJECT_P_HPP const double EPS = 1e-; double add(double a, double b) {
if (fabs(a + b) < EPS * (fabs(a) + fabs(b)))return ;
return a + b;
} class P {
public:
double x, y;
P() {}
P(double x, double y):x(x),y(y){} P operator+(const P &p) {
return P(add(x, p.x), add(y, p.y));
} P operator-(const P &p) {
return P(add(x, -p.x), add(y, -p.y));
} P operator*(const double &d) {
return P(x * d, y * d);
} P operator/(const double &d) {
return P(x / d, y / d);
} double dot(P p) {
return add(x * p.x, y * p.y);
} double det(P p) {
return add(x * p.y, -y * p.x);
} double abs() {
return sqrt(abs2());
} double abs2() {
return dot(*this);
} }; //直线和直线的交点
/*P isLL(P p1,P p2,P q1,P q2){
double d = (q2 - q1).det(p2 - p1);
if(sig(d)==0)return NULL;
return intersection(p1,p2,q1,q2);
}*/ //四点共圆判定
/*bool onC(P p1,P p2,P p3,P p4){
P c = CCenter(p1,p2,p3);
if(c == NULL) return false;
return add((c - p1).abs2(), -(c - p4).abs2()) == 0;
}*/ //三点共圆的圆心
/*P CCenter(P p1,P p2,P p3){
//if(disLP(p1, p2, p3) < EPS)return NULL;//三点共线
P q1 = (p1 + p2) * 0.5;
P q2 = q1 + ((p1 - p2).rot90());
P s1 = (p3 + p2) * 0.5;
P s2 = s1 + ((p3 - p2).rot90());
return isLL(q1,q2,s1,s2);
}*/
bool cmp_x(const P &p, const P &q) {
if (p.x != q.x) return p.x < q.x;
return p.y < q.y;
} vector<P> qs; void convex_hull(P *ps, int n) {
sort(ps, ps + n, cmp_x);
int k = ;
qs.resize( * n);
for (int i = ; i < n; qs[k++] = ps[i++]) {
while (k > && (qs[k - ] - qs[k - ]).det(ps[i] - qs[k - ]) < EPS)k--;
}
for (int i = n - , t = k; i >= ; qs[k++] = ps[i--]) {
while (k > t && (qs[k - ] - qs[k - ]).det(ps[i] - qs[k - ]) < EPS)k--;
}
qs.resize(k - );
} //求凸包的直径
double convexDiameter() {
int qsz = qs.size();
if (qsz == )return ;
if (qsz == ) {
return (qs[] - qs[]).abs();
}
int i = , j = ;
rep(k, qsz) {
if (!cmp_x(qs[i], qs[k]))i = k;
if (cmp_x(qs[j], qs[k])) j = k;
}
double res = ;
int si = i, sj = j;
while (i != sj || j != si) {
res = max(res, (qs[i] - qs[j]).abs());
if ((qs[(i + ) % qsz] - qs[i]).det(qs[(j + ) % qsz] - qs[j]) < ) i = (i + ) % qsz;
else j = (j + ) % qsz;
}
return res;
} #endif //JHELPER_EXAMPLE_PROJECT_P_HPP const int MAXN = ;
P p[MAXN]; class poj2187_Rotating_calipers {
public:
void solve() {
int n;
scanf("%d",&n);//in >> n;
rep(i, n) {
scanf("%lf%lf",&p[i].x,&p[i].y);//in >> p[i].x >> p[i].y;
}
convex_hull(p, n);
double ans = convexDiameter();
printf("%.0f\n",ans*ans);//out << ans * ans << endl;
}
}; int main() {
//std::ios::sync_with_stdio(false);
//std::cin.tie(0);
poj2187_Rotating_calipers solver;
//std::istream &in(std::cin);
//std::ostream &out(std::cout);
solver.solve();
return ;
}

代码君

Java:

 import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream; /**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author xyiyy @https://github.com/xyiyy @http://www.cnblogs.com/fraud/
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(, in, out);
out.close();
} static class TaskC {
Scanner in;
PrintWriter out; public void solve(int testNumber, Scanner in, PrintWriter out) {
this.in = in;
this.out = out;
run();
} void run() {
int n;
n = in.nextInt();
P[] p = new P[n];
for (int i = ; i < n; i++) p[i] = new P(in.nextInt(), in.nextInt());
double ans = P.convexDiameter(P.convexHull(p));
out.printf("%.0f%n", ans * ans);
} } static class P implements Comparable<P> {
public static final double EPS = 1e-;
public final double x;
public final double y; public static double add(double a, double b) {
if (Math.abs(a + b) < EPS * (Math.abs(a) + Math.abs(b))) return ;
return a + b;
} public P(double x, double y) {
this.x = x;
this.y = y;
} public P sub(P p) {
return new P(add(x, -p.x), add(y, -p.y));
} public double det(P p) {
return add(x * p.y, -y * p.x);
} public double dot(P p) {
return add(x * p.x, y * p.y);
} public double abs() {
return Math.sqrt(abs2());
} public double abs2() {
return dot(this);
} public String toString() {
return "(" + x + ", " + y + ")";
} public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
return compareTo((P) obj) == ;
} public int compareTo(P p) {
int b = sig(x - p.x);
if (b != ) return b;
return sig(y - p.y);
} public static int sig(double x) {
if (Math.abs(x) < EPS) return ;
return x < ? - : ;
} public static P[] convexHull(P[] ps) {
int n = ps.length, k = ;
if (n <= ) return ps;
Arrays.sort(ps);
P[] qs = new P[n * ];
for (int i = ; i < n; qs[k++] = ps[i++]) {
while (k > && qs[k - ].sub(qs[k - ]).det(ps[i].sub(qs[k - ])) < EPS) k--;
}
for (int i = n - , t = k; i >= ; qs[k++] = ps[i--]) {
while (k > t && qs[k - ].sub(qs[k - ]).det(ps[i].sub(qs[k - ])) < EPS) k--;
}
P[] res = new P[k - ];
System.arraycopy(qs, , res, , k - );
return res;
} public static double convexDiameter(P[] ps) {
int n = ps.length;
int is = , js = ;
for (int i = ; i < n; i++) {
if (ps[i].x > ps[is].x) is = i;
if (ps[i].x < ps[js].x) js = i;
}
double maxD = ps[is].sub(ps[js]).abs();
int i = is, j = js;
do {
if (ps[(i + ) % n].sub(ps[i]).det(ps[(j + ) % n].sub(ps[j])) >= ) {
j = (j + ) % n;
} else {
i = (i + ) % n;
}
maxD = Math.max(maxD, ps[i].sub(ps[j]).abs());
} while (i != is || j != js);
return maxD;
} } static class Scanner {
BufferedReader br;
StringTokenizer st; public Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
} private void eat(String s) {
st = new StringTokenizer(s);
} public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
} public boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null)
return false;
eat(s);
}
return true;
} public String next() {
hasNext();
return st.nextToken();
} public int nextInt() {
return Integer.parseInt(next());
} }
}

代码君

poj2187 Beauty Contest(旋转卡壳)的更多相关文章

  1. poj 2187:Beauty Contest(旋转卡壳)

    Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 32708   Accepted: 10156 Description Bes ...

  2. poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方

    旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...

  3. poj 2187 Beauty Contest——旋转卡壳

    题目:http://poj.org/problem?id=2187 学习材料:https://blog.csdn.net/wang_heng199/article/details/74477738 h ...

  4. P1452 Beauty Contest 旋转卡壳

    \(\color{#0066ff}{题目描述}\) 贝茜在牛的选美比赛中赢得了冠军"牛世界小姐".因此,贝西会参观N(2 < = N < = 50000)个农场来传播善 ...

  5. poj 2187 Beauty Contest —— 旋转卡壳

    题目:http://poj.org/problem?id=2187 学习资料:https://blog.csdn.net/wang_heng199/article/details/74477738 h ...

  6. POJ-2187 Beauty Contest,旋转卡壳求解平面最远点对!

     凸包(旋转卡壳) 大概理解了凸包A了两道模板题之后在去吃饭的路上想了想什么叫旋转卡壳呢?回来无聊就搜了一下,结果发现其范围真广. 凸包: 凸包就是给定平面图上的一些点集(二维图包),然后求点集组成的 ...

  7. poj2187 Beauty Contest (凸包 + 旋转卡壳)

    Beauty Contest Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 38349   Accepted: 11851 ...

  8. POJ2187 Beauty Contest (旋转卡壳算法 求直径)

    POJ2187 旋转卡壳算法如图 证明:对于直径AB 必然有某一时刻 A和B同时被卡住 所以旋转卡壳卡住的点集中必然存在直径 而卡壳过程显然是O(n)的 故可在O(n)时间内求出直径 凸包具有良好的性 ...

  9. [USACO2003][poj2187]Beauty Contest(凸包+旋转卡壳)

    http://poj.org/problem?id=2187 题意:老题了,求平面内最远点对(让本渣默默想到了悲剧的AHOI2012……) 分析: nlogn的凸包+旋转卡壳 附:http://www ...

随机推荐

  1. iOS开发——C篇&预处理

    其实在C语言的远行过程中,有这样一个流程, 编译:C----〉可执行文件(可以运行的) 1:.C------.i 预处理(之前和之后还是C语法)2: .i-------.s 编译(之前是C语法,之后是 ...

  2. Asp.net Core 缓存 MemoryCache 和 Redis

    Asp.net Core 缓存 MemoryCache 和 Redis 目录索引 [无私分享:ASP.NET CORE 项目实战]目录索引 简介 经过 N 久反复的尝试,翻阅了网上无数的资料,GitH ...

  3. ural 1207 Median on the Plane

    极角排序 #include <cstdio> #include <cstring> #include <algorithm> #include <cmath& ...

  4. AD学习笔记----PCB设计

    1.重新设置板子的形状 Design ---->Board Shape---->Redefine Board Sharp 2.通过Board Options 对板子进行设置 3.添加一个新 ...

  5. MCS-51单片机内部结构

    8051是MCS-51系列单片机的典型产品,我们以这一代表性的机型进行系统的讲解. 8051单片机包含中央处理器.程序存储器(ROM).数据存储器(RAM).定时/计数器.并行接口.串行接口和中断系统 ...

  6. 理解 break, continue, return 和 exit

    你们知道 “break”, “continue”, “return” 和 “exit”的作用吗? 它们是功能强大的语言结构体.下面通过一个测试函数来说明它们之间的不同. 1 2 3 4 5 6 7 8 ...

  7. IntelliJ Idea取消Could not autowire. No beans of 'xxxx' type found的错误提示

    1.问题描述 在Idea的spring工程里,经常会遇到Could not autowire. No beans of 'xxxx' type found的错误提示.但程序的编译和运行都是没有问题的, ...

  8. Linux企业级项目实践之网络爬虫(27)——多路IO复用

    与多线程和多进程相比,I/O多路复用的最大优势是系统开销小,系统不需要建立新的进程或者线程,也不必维护这些线程和进程. 主要应用: (1)客户程序需要同时处理交互式的输入和服务器之间的网络连接 (2) ...

  9. Java & Android Interviews #1

    1.GC是什么? 为什么要有GC?GC是垃圾收集的意思(Gabage Collection),内存处理是编程人员容易出现问题的地方,忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃,Java提供 ...

  10. java与数据结构(8)---java实现链队列

    链队列 实际上就是单链表,只是规定了删除在队头进行,添加在队尾进行. 链队列代码结构 package list.queue; public interface Queuable<T>; p ...