E. Three Swaps
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Xenia the horse breeder has n (n > 1) horses that stand in a row. Each horse has its own unique number. Initially, the i-th left horse has number i. That is, the sequence of numbers of horses in a row looks as follows (from left to right): 1, 2, 3, ..., n.

Xenia trains horses before the performance. During the practice sessions, she consistently gives them commands. Each command is a pair of numbers l, r (1 ≤ l < rn). The command l, r means that the horses that are on the l-th, (l + 1)-th, (l + 2)-th, ..., r-th places from the left must be rearranged. The horses that initially stand on the l-th and r-th places will swap. The horses on the (l + 1)-th and(r - 1)-th places will swap. The horses on the (l + 2)-th and (r - 2)-th places will swap and so on. In other words, the horses that were on the segment [l, r] change their order to the reverse one.

For example, if Xenia commanded l = 2, r = 5, and the sequence of numbers of horses before the command looked as (2, 1, 3, 4, 5, 6), then after the command the sequence will be (2, 5, 4, 3, 1, 6).

We know that during the practice Xenia gave at most three commands of the described form. You have got the final sequence of numbers of horses by the end of the practice. Find what commands Xenia gave during the practice. Note that you do not need to minimize the number of commands in the solution, find any valid sequence of at most three commands.

Input

The first line contains an integer n (2 ≤ n ≤ 1000) — the number of horses in the row. The second line contains n distinct integersa1, a2, ..., an (1 ≤ ain), where ai is the number of the i-th left horse in the row after the practice.

Output

The first line should contain integer k (0 ≤ k ≤ 3) — the number of commads Xenia gave during the practice. In each of the next k lines print two integers. In the i-th line print numbers li, ri (1 ≤ li < rin) — Xenia's i-th command during the practice.

It is guaranteed that a solution exists. If there are several solutions, you are allowed to print any of them.

Sample test(s)
input
5
1 4 3 2 5
output
1
2 4
input
6
2 1 4 3 6 5
output
3
1 2
3 4
5 6
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include <queue>
#include <algorithm>
#include <limits.h>
using namespace std;
#define X first
#define Y second
#define PB(x) push_back(x)
#define MP(x,y) make_pair(x,y)
#define CLR(x) memset(x,0,sizeof(x));
#define Rep(i,x,y) for(int i=x;i<y;i++)
#define For(i,x,y) for(int i=x;i<=y;i++)
#define DFor(i,x,y) for(int i=x;i>=y;i--)
const int oo=INT_MAX>>2;
const int sp[4][2]={{0,1},{1,0},{0,-1},{-1,0}};
typedef pair<int, int> F;
vector<F> ans;
int n,v[2000];
int getl(){
For(i,1,n) if (v[i]!=i) return i; return 0;
}
int getr(){
DFor(i,n,1)if (v[i]!=i) return i;
}
int getp(int x){
For(i,1,n) if (v[i]==x) return i;
} int dfs(int k)
{
int l=getl();
if (!l) return 1;
if (k==4) return 0;
int r=getp(l);
reverse(v+l, v+r+1);
if (dfs(k+1)) return ans.PB(MP(l, r)),1;
reverse(v+l, v+r+1); r=getr();
l=getp(r);
reverse(v+l, v+r+1);
if (dfs(k+1)) return ans.PB(MP(l, r)),1;
reverse(v+l, v+r+1);
return 0;
}
int main()
{
// freopen("/Users/MAC/Desktop/Error202/Error202/1.in","r",stdin);
// freopen("/Users/MAC/Desktop/Error202/Error202/1.out","w",stdout);
cin>>n;
For(i,1,n) cin>>v[i];
dfs(1);
if (ans.size()) {
cout<<ans.size()<<endl;
Rep(i,0,ans.size()) cout<<ans[i].X<<" "<<ans[i].Y<<endl;
}
else cout<<"2\n1 2\n1 2";
}

Three Swaps DFS的更多相关文章

  1. codeforces 691D D. Swaps in Permutation(dfs)

    题目链接: D. Swaps in Permutation time limit per test 5 seconds memory limit per test 256 megabytes inpu ...

  2. codeforces 691D Swaps in Permutation DFS

    这个题刚开始我以为是每个交换只能用一次,然后一共m次操作 结果这个题的意思是操作数目不限,每个交换也可以无限次 所以可以交换的两个位置连边,只要两个位置连通,就可以呼唤 然后连通块内排序就好了 #in ...

  3. uva 331 Mapping the Swaps 求交换排序的map 纯DFS

    给出一个序列,每次交换两个数,求有几种交换方法能使序列变成升序. n不大于5,用dfs做. 代码: #include <cstdio> #include <cstring> # ...

  4. [codeforces 339]E. Three Swaps

    [codeforces 339]E. Three Swaps 试题描述 Xenia the horse breeder has n (n > 1) horses that stand in a ...

  5. uva331 - Mapping the Swaps

    Mapping the Swaps Sorting an array can be done by swapping certain pairs of adjacent entries in the ...

  6. Swaps in Permutation

    Swaps in Permutation You are given a permutation of the numbers 1, 2, ..., n and m pairs of position ...

  7. CodeForces - 441D: Valera and Swaps(置换群)

    A permutation p of length n is a sequence of distinct integers p1, p2, ..., pn (1 ≤ pi ≤ n). A permu ...

  8. 801. Minimum Swaps To Make Sequences Increasing

    We have two integer sequences A and B of the same non-zero length. We are allowed to swap elements A ...

  9. BZOJ 3083: 遥远的国度 [树链剖分 DFS序 LCA]

    3083: 遥远的国度 Time Limit: 10 Sec  Memory Limit: 1280 MBSubmit: 3127  Solved: 795[Submit][Status][Discu ...

随机推荐

  1. mysql的触发器

    删除触发器 drop TRIGGER 触发器名字; 查找库里面的所有触发器 SELECT * FROM information_schema.`TRIGGERS`;show triggers 触发器语 ...

  2. symfony2 关于是否需要建立多bundle

    http://blog.danielribeiro.org/yes-you-can-have-low-coupling-in-a-symfony-standard-edition-applicatio ...

  3. MySQl5.6最新安装

    http://www.cnblogs.com/xiongpq/p/3384681.html http://dev.mysql.com/doc/refman/5.5/en/source-configur ...

  4. QR Code簡介、介紹

    QR Code為目前最常被使用的一種二維條碼,1994年由日本Denso-Wav e公司發明,QR是英文Qu ickResponse的縮寫,即快速反應的意思,1999年時,公布了符合日本當地的標準-「 ...

  5. orcale装完sqldevelop启动不了

    一直在搞考试,昨天考java企业级开发要交项目搞得我装系统后又装了个orcale,每次重新配百度太麻烦,还好记得点,记录下碰到的错误 64位的系统下的orcale11 64位里面的sqldevelop ...

  6. Javascript高级程序设计学习笔记一

    看完w3school的javascript的概念,有点基础,开始红皮书的路程,今晚总结前二章的心得. 第一章:javascript简介 重点是javascript的实现是由 ECMAScript(核心 ...

  7. 保存android程序崩溃日志到SD卡

    private boolean writeToSDCard(Throwable ex) { boolean isDealing = false; if (Environment.getExternal ...

  8. JS提取URL中的参数

    <!DOCTYPE html><html>    <head>        <meta charset="UTF-8">      ...

  9. js 去除字符串左右两端的空格

    <script type="text/javascript"> function trim(str){ //删除左右两端的空格      return str.repl ...

  10. PKU POJ 1006 Biorhythms (中国剩余定理)

    中国剩余定理 x = ai (mod mi)  ai和mi是一组数,mi两两互质,求x 令Mi = m1*m2*~mk     其中,mi不包含在内. 因为mi两两互质,所以存在x和y, st   M ...