Description

Bessie has been hired to build a cheap internet network among Farmer John's N (2 <= N <= 1,000) barns that are conveniently numbered 1..N. FJ has already done some surveying, and found M (1 <= M <= 20,000) possible connection routes between pairs of barns. Each possible connection route has an associated cost C (1 <= C <= 100,000). Farmer John wants to spend the least amount on connecting the network; he doesn't even want to pay Bessie. 

Realizing Farmer John will not pay her, Bessie decides to do the worst job possible. She must decide on a set of connections to install so that (i) the total cost of these connections is as large as possible, (ii) all the barns are connected together (so that it is possible to reach any barn from any other barn via a path of installed connections), and (iii) so that there are no cycles among the connections (which Farmer John would easily be able to detect). Conditions (ii) and (iii) ensure that the final set of connections will look like a "tree".

Input

* Line : Two space-separated integers: N and M 

* Lines ..M+: Each line contains three space-separated integers A, B, and C that describe a connection route between barns A and B of cost C.

Output

* Line : A single integer, containing the price of the most expensive tree connecting all the barns. If it is not possible to connect all the barns, output -.
Sample Input

Sample Output


Hint

OUTPUT DETAILS: 

The most expensive tree has cost  +  +  +  = . It uses the following connections:  to ,  to ,  to , and  to .

Source

 
其实不过就是裸的最小生成树,(kruscal实现),只不过这里的话要将边按从大到小排序,然后判断一下是不是连通的就可以了。
 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
#include <stack>
using namespace std;
#define PI acos(-1.0)
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 1006
#define M 20006
#define inf 1e12
struct Node{
int x,y;
int cost;
}edge[M];
int n,m;
int fa[N];
void init(){
for(int i=;i<N;i++){
fa[i]=i;
}
}
int find(int x){
return fa[x]==x?x:fa[x]=find(fa[x]);
}
bool cmp(Node a,Node b){
return a.cost>b.cost;
}
int main()
{
while(scanf("%d%d",&n,&m)==){
init();
for(int i=;i<m;i++){
int a,b,c;
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].cost);
}
sort(edge,edge+m,cmp);
int ans=;
int num=n-;
for(int i=;i<m;i++){
int root1=find(edge[i].x);
int root2=find(edge[i].y);
if(root1!=root2){
ans+=edge[i].cost;
fa[root1]=root2;
num--;
}
}
if(num!=){
printf("-1\n");
}
else{
printf("%d\n",ans);
}
}
return ;
}

poj 2377 Bad Cowtractors(最大生成树!)的更多相关文章

  1. poj 2377 Bad Cowtractors

    题目连接 http://poj.org/problem?id=2377 Bad Cowtractors Description Bessie has been hired to build a che ...

  2. poj - 2377 Bad Cowtractors&&poj 2395 Out of Hay(最大生成树)

    http://poj.org/problem?id=2377 bessie要为FJ的N个农场联网,给出M条联通的线路,每条线路需要花费C,因为意识到FJ不想付钱,所以bsssie想把工作做的很糟糕,她 ...

  3. POJ - 2377 Bad Cowtractors Kru最大生成树

    Bad Cowtractors Bessie has been hired to build a cheap internet network among Farmer John's N (2 < ...

  4. poj 2377 Bad Cowtractors (最大生成树prim)

    Bad Cowtractors Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) To ...

  5. POJ 2377 Bad Cowtractors (Kruskal)

    题意:给出一个图,求出其中的最大生成树= =如果无法产生树,输出-1. 思路:将边权降序再Kruskal,再检查一下是否只有一棵树即可,即根节点只有一个 #include <cstdio> ...

  6. POJ 2377 Bad Cowtractors( 最小生成树转化 )

    链接:传送门 题意:给 n 个点 , m 个关系,求这些关系的最大生成树,如果无法形成树,则输出 -1 思路:输入时将边权转化为负值就可以将此问题转化为最小生成树的问题了 /************* ...

  7. POJ:2377-Bad Cowtractors

    传送门:http://poj.org/problem?id=2377 Bad Cowtractors Time Limit: 1000MS Memory Limit: 65536K Total Sub ...

  8. MST:Bad Cowtractors(POJ 2377)

    坏的牛圈建筑 题目大意:就是现在农夫又要牛修建牛栏了,但是农夫想不给钱,于是牛就想设计一个最大的花费的牛圈给他,牛圈的修理费用主要是用在连接牛圈上 这一题很简单了,就是找最大生成树,把Kruskal算 ...

  9. poj 2377 最大生成树

    #include<stdio.h> #include<stdlib.h> #define N 1100 struct node { int u,v,w; }bian[11000 ...

随机推荐

  1. Python多线程(threading模块)

    线程(thread)是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务. ...

  2. zXing使用小结

    在android上二维码.条形码扫描,google官方为我们提供了zXing,几乎android涉及到扫描的都是用这个开源项目实现的,也有在android上使用zBar的,和其他用过的交流得知zBar ...

  3. 【软件技巧】Sublime Text为不同语法定义不同高亮

    Sublime Text默认的语法高亮已经非常美丽了,可是对于个别语言还是有些不爽. 默认高亮规则叫Monokai,能够从Preferences->Settings - Default中看到: ...

  4. java获取文件大小

    1.使用File的length()方法获取.这个方法获取的字节数,由于返回的是Long类型所以能返回的最大值是Long.MAX_VALUE File file = new File( "D: ...

  5. openssl 对称加密算法enc命令详解

    1.对称加密算法概述 openssl的加密算法库提供了丰富的对称加密算法,我们可以通过openssl提供的对称加密算法指令的方式使用,也可以通过调用openssl提供的API的方式使用. openss ...

  6. 自由缩放属性-resize(禁止textarea的自由缩放尺寸功能)

    resize:none|both|horizontal|vertical|inherit 可以用来改变元素的尺寸大小 用上这个属性后元素的有下脚会有一个小图标 拖它就可以了 但是我把resize:bo ...

  7. Web 上一页下一页 用超链接 用按钮

              方法一超链接 Default.aspx.cs html代码************************************************************* ...

  8. Spring mvc中@RequestMapping 6个基本用法整理

    继续整理,这个是前段时间用jsp开发的一个站点,说起来php程序员去做jsp程序确实有些小不适应,但是弄完后绝对对于这种强类型语言而比收获还是颇多的. 1,最基本的,方法级别上应用 @RequestM ...

  9. java集合--Queue用法

    队列是一种特殊的线性表,它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作.进行插入操作的端称为队尾,进行删除操作的端称为队头.队列中没有元素时,称为空队列. 在队列这 ...

  10. linux android ndk

    Android调用so库, so库是c语言编写, 在linux 64位系统+ndk(32位)生成 lib*.so (32位) 1. 所需软件环境: 1)so库开发环境 操作系统: Redhat Ser ...