C11 memory_order
概念:
摘录自:http://preshing.com/20120913/acquire-and-release-semantics/
Acquire semantics is a property which can only apply to operations which read from shared memory, whether they are read-modify-write operations or plain loads. The operation is then considered a read-acquire. Acquire semantics prevent memory reordering of the read-acquire with any read or write operation which follows it in program order.
Release semantics is a property which can only apply to operations which write to shared memory, whether they are read-modify-write operations or plain stores. The operation is then considered a write-release. Release semantics prevent memory reordering of the write-release with any read or write operation which precedes it in program order.
Acquire and Release Fences
First things first: Acquire and release fences are considered low-level lock-free operations. If you stick with higher-level, sequentially consistent atomic types, such as volatile variables in Java 5+, or default atomics in C++11, you don’t need acquire and release fences. The tradeoff is that sequentially consistent types are slightly less scalable or performant for some algorithms.
On the other hand, if you’ve developed for multicore devices in the days before C++11, you might feel an affinity for acquire and release fences. Perhaps, like me, you remember struggling with the placement of some lwsync intrinsics while synchronizing threads on Xbox 360. What’s cool is that once you understand acquire and release fences, you actually see what we were trying to accomplish using those platform-specific fences all along.
Acquire and release fences, as you might imagine, are standalone memory fences, which means that they aren’t coupled with any particular memory operation. So, how do they work?
An acquire fence prevents the memory reordering of any read which precedes it in program order with any read or write which follows it in program order.
A release fence prevents the memory reordering of any read or write which precedes it in program order with any write which follows it in program order.
In other words, in terms of the barrier types explained here, an acquire fence serves as both a #LoadLoad + #LoadStore barrier, while a release fence functions as both a #LoadStore + #StoreStore barrier. That’s all they purport to do.

LoadLoad确保前后两个Load操作不乱序,StoreStore确保前后两个Store操作不乱序。 PowerPC上通过 lwsync 轻量级sync
StoreLoad 是最昂贵的。类似于磁盘的sync操作,确保将高速缓存中数据完全写入主内存;并确保其它CPU cache更新。PowerPC上通过 sync
编程接口:
C++11用法:
#include <atomic>
std::atomic_thread_fence(std::memory_order_acquire);
std::atomic_thread_fence(std::memory_order_release);
C11 用法:
#include <stdatomic.h>
atomic_thread_fence(memory_order_acquire);
atomic_thread_fence(memory_order_release);
以 C11 为例详细解释头文件 <stdatomic.h> 中定义的 memory_order 枚举的每个值的意思
enum memory_order {
memory_order_relaxed, /* 仅仅确保读写操作的原子性。无内存序,所以仅适用 atomic 变量 */
memory_order_consume, /* 数据依赖序,DEC Alpha only */
memory_order_acquire,
memory_order_release,
memory_order_acq_rel,
memory_order_seq_cst
};
关于 C11 compare and exchange 各自版本的操作区别:
weak 和 strong
循环中用 weak 有更好的性能。 非循环操作必须用 strong 版本。因为 weak 有时候会在 所比较的值相等时候 也失败返回。
implicit 和 explicit
implicit 版本会默认 使用强内存模型 memory_order_seq_cst 。
explicit 版本会有2个额外参数 succ 和 fail,succ 指定 compare 比较成功后的内存 barrier;fail 指定 compare 失败后的内存 barrier 。
C 11 对各自的英文解释,比较绕口:
| Value | Explanation | |
| memory_order_relaxed | Relaxed ordering: there are no constraints on reordering of memory accesses around the atomic variable. | 确保操作原子性 |
| memory_order_consume | Consume operation: no reads in the current thread dependent on the value currently loaded can be reordered before this load. This ensures that writes to dependent variables in other threads that release the same atomic variable are visible in the current thread. On most platforms, this affects compiler optimization only. | 简言之 Data dependency barriers,比 Acquire 更弱。一般CPU都会自动保证数据依赖序(Alpha 除外) |
| memory_order_acquire | Acquire operation: no reads in the current thread can be reordered before this load. This ensures that all writes in other threads that release the same atomic variable are visible in the current thread. | 其它线程Release之前的所有内存可见 |
| memory_order_release | Release operation: no writes in the current thread can be reordered after this store. This ensures that all writes in the current thread are visible in other threads that acquire the same atomic variable. | 此Release操作之前的所有内存,其它线程Acquire后可见; 此Release操作之前的部分内存,其它线程Consume后可见; |
| memory_order_acq_rel | Acquire-release operation: no reads in the current thread can be reordered before this load as well as no writes in the current thread can be reordered after this store. The operation is read-modify-write operation. It is ensured that all writes in another threads that release the same atomic variable are visible before the modification and the modification is visible in other threads that acquire the same atomic variable. | Acquire和Release操作的合体。自动对读做Aquire操作;对写做Release操作 |
| memory_order_seq_cst | Sequential ordering. The operation has the same semantics as acquire-release operation, and additionally has sequentially-consistent operation ordering. |
a full memory fence 频繁使用可能会成为性能瓶颈 |
重点:解释下什么情况下需要 memory_order_consume (data dependency barrier)
A=<data dependency barrier>B=*A
A=<data dependency barrier>C=B[A]
问题:已经有封装好的 atomic 变量了,那 atomic_thread_fence 还有用场吗?
有用场。如下面例子,开始只有 relaxed 保证原子性,仅仅当读到变量满足条件时,才用 acquire 确保 do_work() 发生在 读到 mailbox[i] 之后
样例来自 http://en.cppreference.com/w/cpp/atomic/atomic_thread_fence
const int num_mailboxes = ;
std::atomic<int> mailbox[num_mailboxes]; // The writer threads update non-atomic shared data and then update mailbox[i] as follows
std::atomic_store_explicit(&mailbox[i], std::memory_order_release); // Reader thread needs to check all mailbox[i], but only needs to sync with one
for (int i = ; i < num_mailboxes; ++i) {
if (std::atomic_load_explicit(&mailbox[i], std::memory_order_relaxed) == my_id) {
std::atomic_thread_fence(std::memory_order_acquire); // synchronize with just one writer
do_work(i); // guaranteed to observe everything done in the writer thread before
// the atomic_store_explicit()
}
}
C11 memory_order的更多相关文章
- c89、c99、c11区别
c89 c99 注: GCC支持C99, 通过 --std=c99 命令行参数开启,如: 代码:gcc --std=c99 test.c ------------------------------- ...
- gcc/g++ 如何支持c11 / c++11标准编译
如果用命令 g++ -g -Wall main.cpp 编译以下代码 : /* file : main.cpp */ #include <stdio.h> int main() { in ...
- 【转】gcc/g++ 如何支持c11 / c++11标准编译
如果用命令 g++ -g -Wall main.cpp 编译以下代码 : 1 2 3 4 5 6 7 8 9 10 11 12 /* file : main.cpp */ #include ...
- C89, C99, C11: All the specifics that I know
before anything.. sizeof is an operand! sizeof is an operand! sizeof is an operand! 重要なことは三回にしませんね! ...
- [C/C++语言标准] ISO C99/ ISO C11/ ISO C++11/ ISO C++14 Downloads
语言法典,C/C++社区人手一份,技术讨(hu)论(peng)必备 ISO IEC C99 https://files.cnblogs.com/files/racaljk/ISO_C99.pdf IS ...
- 是我out了,c11标准出炉鸟
gcc -std=c11 -Wall -O3 -g0 -s -o x.c x 或者 clang -std=c11 -Wall -O3 -g0 -s -o x.c x 来吧! 我是有多无聊啊 测试代码: ...
- [转载]哪个版本的gcc才支持c11
转自:https://blog.csdn.net/haluoluo211/article/details/71141093 哪个版本的gcc才支持c11 2017年05月03日 19:25:43 Fi ...
- 通过atomic_flag简单自旋锁实现简单说明标准库中锁使用的memory_order
在使用标准库中的加锁机制时,例如我们使用std::mutex,写了如下的代码(下面的代码使用condition_variable可能更合适) std::mutex g_mtx; int g_resNu ...
- STL-容器库101--array【C11】
1. 原型 C11提供 template < class T, size_t N > class array; T: 元素类型,以 array::value_type 作为别名使用:N: ...
随机推荐
- USB系列之九:基于ASPI的U盘驱动程序
USB系列之七和之八介绍了ASPI,并通过一些实例说明了基于ASPI的编程方法,本文使用前两篇文章介绍的知识以及以前介绍的有关DOS驱动程序下驱动程序的内容实际完成一个简单的基于ASPI的U盘驱动程序 ...
- WebSocket C# Demo
WebSocket 规范 WebSocket 协议本质上是一个基于 TCP 的协议.为了建立一个 WebSocket 连接,客户端浏览器首先要向服务器发起一个 HTTP 请求,这个请求和通常的 HTT ...
- mysql 保留的关键字
mysql> select precision from Product; ERROR 1064 (42000): You have an error in your SQL syntax; c ...
- spring管理hibernate4 transaction getCurrentSession为什么报错?
hibernate4不支持你用hibernate3的 getcurrentSession,建议你用openSession
- 【转】基于V4L2的视频驱动开发
编写基于V4L2视频驱动主要涉及到以下几个知识点:1> 摄像头方面的知识 要了解选用的摄像头的特性,包括访问控制方法.各种参数的配置方法.信号输出类型等.2> Camera解码器.控制器 ...
- Segment(技巧 相乘转换成相加 + java)
Segment Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- leetcode_question_73 Set Matrix Zeroes
Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. Follow ...
- 2014年百度之星资格赛第三题Xor Sum
Problem Description Zeus 和 Prometheus 做了一个游戏,Prometheus 给 Zeus 一个集合,集合中包括了N个正整数,随后 Prometheus 将向 Zeu ...
- SSH框架-Caused by: org.hibernate.MappingException: column attribute may not be used together with <column> subelement
昨晚修改了一些表关系,在相关的hbm.xml文件中做了改动,今天早上起来启动tomcat后,发现项目启动不了,控制台报错: 2015-6-14 9:09:42 org.apache.catalina. ...
- 【巧妙预处理系列+离散化处理】【uva1382】Distant Galaxy
给出平面上的n个点,找一个矩形,使得边界上包含尽量多的点. [输入格式] 输入的第一行为数据组数T.每组数据的第一行为整数n(1≤n≤100):以下n行每行两个整数,即各个点的坐标(坐标均为绝对值不超 ...