C11 memory_order
概念:
摘录自:http://preshing.com/20120913/acquire-and-release-semantics/
Acquire semantics is a property which can only apply to operations which read from shared memory, whether they are read-modify-write operations or plain loads. The operation is then considered a read-acquire. Acquire semantics prevent memory reordering of the read-acquire with any read or write operation which follows it in program order.
Release semantics is a property which can only apply to operations which write to shared memory, whether they are read-modify-write operations or plain stores. The operation is then considered a write-release. Release semantics prevent memory reordering of the write-release with any read or write operation which precedes it in program order.
Acquire and Release Fences
First things first: Acquire and release fences are considered low-level lock-free operations. If you stick with higher-level, sequentially consistent atomic types, such as volatile variables in Java 5+, or default atomics in C++11, you don’t need acquire and release fences. The tradeoff is that sequentially consistent types are slightly less scalable or performant for some algorithms.
On the other hand, if you’ve developed for multicore devices in the days before C++11, you might feel an affinity for acquire and release fences. Perhaps, like me, you remember struggling with the placement of some lwsync intrinsics while synchronizing threads on Xbox 360. What’s cool is that once you understand acquire and release fences, you actually see what we were trying to accomplish using those platform-specific fences all along.
Acquire and release fences, as you might imagine, are standalone memory fences, which means that they aren’t coupled with any particular memory operation. So, how do they work?
An acquire fence prevents the memory reordering of any read which precedes it in program order with any read or write which follows it in program order.
A release fence prevents the memory reordering of any read or write which precedes it in program order with any write which follows it in program order.
In other words, in terms of the barrier types explained here, an acquire fence serves as both a #LoadLoad + #LoadStore barrier, while a release fence functions as both a #LoadStore + #StoreStore barrier. That’s all they purport to do.

LoadLoad确保前后两个Load操作不乱序,StoreStore确保前后两个Store操作不乱序。 PowerPC上通过 lwsync 轻量级sync
StoreLoad 是最昂贵的。类似于磁盘的sync操作,确保将高速缓存中数据完全写入主内存;并确保其它CPU cache更新。PowerPC上通过 sync
编程接口:
C++11用法:
#include <atomic>
std::atomic_thread_fence(std::memory_order_acquire);
std::atomic_thread_fence(std::memory_order_release);
C11 用法:
#include <stdatomic.h>
atomic_thread_fence(memory_order_acquire);
atomic_thread_fence(memory_order_release);
以 C11 为例详细解释头文件 <stdatomic.h> 中定义的 memory_order 枚举的每个值的意思
enum memory_order {
memory_order_relaxed, /* 仅仅确保读写操作的原子性。无内存序,所以仅适用 atomic 变量 */
memory_order_consume, /* 数据依赖序,DEC Alpha only */
memory_order_acquire,
memory_order_release,
memory_order_acq_rel,
memory_order_seq_cst
};
关于 C11 compare and exchange 各自版本的操作区别:
weak 和 strong
循环中用 weak 有更好的性能。 非循环操作必须用 strong 版本。因为 weak 有时候会在 所比较的值相等时候 也失败返回。
implicit 和 explicit
implicit 版本会默认 使用强内存模型 memory_order_seq_cst 。
explicit 版本会有2个额外参数 succ 和 fail,succ 指定 compare 比较成功后的内存 barrier;fail 指定 compare 失败后的内存 barrier 。
C 11 对各自的英文解释,比较绕口:
| Value | Explanation | |
| memory_order_relaxed | Relaxed ordering: there are no constraints on reordering of memory accesses around the atomic variable. | 确保操作原子性 |
| memory_order_consume | Consume operation: no reads in the current thread dependent on the value currently loaded can be reordered before this load. This ensures that writes to dependent variables in other threads that release the same atomic variable are visible in the current thread. On most platforms, this affects compiler optimization only. | 简言之 Data dependency barriers,比 Acquire 更弱。一般CPU都会自动保证数据依赖序(Alpha 除外) |
| memory_order_acquire | Acquire operation: no reads in the current thread can be reordered before this load. This ensures that all writes in other threads that release the same atomic variable are visible in the current thread. | 其它线程Release之前的所有内存可见 |
| memory_order_release | Release operation: no writes in the current thread can be reordered after this store. This ensures that all writes in the current thread are visible in other threads that acquire the same atomic variable. | 此Release操作之前的所有内存,其它线程Acquire后可见; 此Release操作之前的部分内存,其它线程Consume后可见; |
| memory_order_acq_rel | Acquire-release operation: no reads in the current thread can be reordered before this load as well as no writes in the current thread can be reordered after this store. The operation is read-modify-write operation. It is ensured that all writes in another threads that release the same atomic variable are visible before the modification and the modification is visible in other threads that acquire the same atomic variable. | Acquire和Release操作的合体。自动对读做Aquire操作;对写做Release操作 |
| memory_order_seq_cst | Sequential ordering. The operation has the same semantics as acquire-release operation, and additionally has sequentially-consistent operation ordering. |
a full memory fence 频繁使用可能会成为性能瓶颈 |
重点:解释下什么情况下需要 memory_order_consume (data dependency barrier)
A=<data dependency barrier>B=*A
A=<data dependency barrier>C=B[A]
问题:已经有封装好的 atomic 变量了,那 atomic_thread_fence 还有用场吗?
有用场。如下面例子,开始只有 relaxed 保证原子性,仅仅当读到变量满足条件时,才用 acquire 确保 do_work() 发生在 读到 mailbox[i] 之后
样例来自 http://en.cppreference.com/w/cpp/atomic/atomic_thread_fence
const int num_mailboxes = ;
std::atomic<int> mailbox[num_mailboxes]; // The writer threads update non-atomic shared data and then update mailbox[i] as follows
std::atomic_store_explicit(&mailbox[i], std::memory_order_release); // Reader thread needs to check all mailbox[i], but only needs to sync with one
for (int i = ; i < num_mailboxes; ++i) {
if (std::atomic_load_explicit(&mailbox[i], std::memory_order_relaxed) == my_id) {
std::atomic_thread_fence(std::memory_order_acquire); // synchronize with just one writer
do_work(i); // guaranteed to observe everything done in the writer thread before
// the atomic_store_explicit()
}
}
C11 memory_order的更多相关文章
- c89、c99、c11区别
c89 c99 注: GCC支持C99, 通过 --std=c99 命令行参数开启,如: 代码:gcc --std=c99 test.c ------------------------------- ...
- gcc/g++ 如何支持c11 / c++11标准编译
如果用命令 g++ -g -Wall main.cpp 编译以下代码 : /* file : main.cpp */ #include <stdio.h> int main() { in ...
- 【转】gcc/g++ 如何支持c11 / c++11标准编译
如果用命令 g++ -g -Wall main.cpp 编译以下代码 : 1 2 3 4 5 6 7 8 9 10 11 12 /* file : main.cpp */ #include ...
- C89, C99, C11: All the specifics that I know
before anything.. sizeof is an operand! sizeof is an operand! sizeof is an operand! 重要なことは三回にしませんね! ...
- [C/C++语言标准] ISO C99/ ISO C11/ ISO C++11/ ISO C++14 Downloads
语言法典,C/C++社区人手一份,技术讨(hu)论(peng)必备 ISO IEC C99 https://files.cnblogs.com/files/racaljk/ISO_C99.pdf IS ...
- 是我out了,c11标准出炉鸟
gcc -std=c11 -Wall -O3 -g0 -s -o x.c x 或者 clang -std=c11 -Wall -O3 -g0 -s -o x.c x 来吧! 我是有多无聊啊 测试代码: ...
- [转载]哪个版本的gcc才支持c11
转自:https://blog.csdn.net/haluoluo211/article/details/71141093 哪个版本的gcc才支持c11 2017年05月03日 19:25:43 Fi ...
- 通过atomic_flag简单自旋锁实现简单说明标准库中锁使用的memory_order
在使用标准库中的加锁机制时,例如我们使用std::mutex,写了如下的代码(下面的代码使用condition_variable可能更合适) std::mutex g_mtx; int g_resNu ...
- STL-容器库101--array【C11】
1. 原型 C11提供 template < class T, size_t N > class array; T: 元素类型,以 array::value_type 作为别名使用:N: ...
随机推荐
- iOS 删除相册中照片--来自简书
来自:http://www.jianshu.com/p/ac18aa3f28c2 最近公司的app有一个新功能是在app中删除相册的照片 ,本来是一个比较简单地功能,在做的过程中却发现AssetsLi ...
- IOS 网络判断
Reachability *connectionNetWork= [Reachability reachabilityForInternetConnection] ; int status = [co ...
- Linux-0.11内核源代码分析系列:内存管理get_free_page()函数分析
Linux-0.11内存管理模块是源码中比較难以理解的部分,如今把笔者个人的理解发表 先发Linux-0.11内核内存管理get_free_page()函数分析 有时间再写其它函数或者文件的:) /* ...
- OSError: [Errno 13] Permission denied: '/etc/cron.d/1sandbox_registration'
使用Hortonworks 的twitter tutorial: http://hortonworks.com/hadoop-tutorial/how-to-refine-and-visualize- ...
- MVC不错的学习资料
MVC不错的学习资料: http://www.cnblogs.com/darrenji/
- javascript动态创建对象
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Oracle数据类型与.NET中的对应关系(转)
Oracle数据类型与.NET中的对应关系 2011-02-24 10:02:16 标签:C# oracletype Oracle 数据类型 .NET Oracle连接添加的引用不同,会存在数据类型不 ...
- exist和not exist用法
参考:http://wenku.baidu.com/view/577f4d49cf84b9d528ea7a6f.html //这个讲的很详细 引用自:http://chenling1018.bl ...
- JSP进阶 之 SimpleTagSupport 开发自定义标签
绝大部分 Java 领域的 MVC 框架,例如 Struts.Spring MVC.JSF 等,主要由两部分组成:控制器组件和视图组件.其中视图组件主要由大量功能丰富的标签库充当.对于大部分开发者而言 ...
- T - stl 的mapⅡ
Description Ignatius is so lucky that he met a Martian yesterday. But he didn't know the language th ...