binaryTree:普通二叉树
#ifndef _Tree_H
#define _Tree_H
typedef int ElementType; typedef struct TreeNode
{
ElementType Element;
struct TreeNode *Left;
struct TreeNode *Right;
}*Position, *SearchTree; SearchTree MakeEmpty(SearchTree T);
Position Find(ElementType X, SearchTree T);
Position FindMin(SearchTree T);
Position FindMax(SearchTree T);
SearchTree Insert(ElementType X, SearchTree T);
SearchTree Delete(ElementType X, SearchTree T); #endif #include <stdio.h>
#include <stdlib.h>
#include "binarySearchTree.h" SearchTree MakeEmpty(SearchTree T)
{
if (T != NULL)
{
MakeEmpty(T->Left);
MakeEmpty(T->Right);
free(T);
}
return NULL;
} Position Find(ElementType X, SearchTree T)
{
if (T == NULL)
return NULL;
else if (X < T->Element)
return Find(X, T->Left);
else if (X > T->Element)
return Find(X, T->Right); //都需要return
else
return T; } Position FindMin(SearchTree T)
{
if (T == NULL)
{
return NULL;
}
else if (T->Left == NULL)
{
return T;
}
else
{
return FindMin(T->Left);
}
} Position FindMax(SearchTree T)
{
if (T == NULL)
{
while (T->Right != NULL)
{
T = T->Right;
}
}
return T;
}
SearchTree Insert(ElementType X, SearchTree T)
{
if (T == NULL)
{
T = malloc(sizeof(struct TreeNode));
if (T == NULL)
perror("malloc error\n");
else
{
T->Element = X;
T->Left = NULL;
T->Right = NULL;
}
}
else if (X < T->Element)
T->Left = Insert(X, T->Left);
else if (X > T->Element)
T->Right = Insert(X, T->Right);
return T;
} SearchTree Delete(ElementType X, SearchTree T)
{
Position TmpCell = NULL; if (T == NULL)
{
printf("Element not found");
}
else if (X < T->Element)
{
T->Left = Delete(X, T->Left);
}
else if (X > T->Element)
{
T->Right = Delete(X, T->Right);
}
else if (T->Left && T->Right) //找到值
{
TmpCell = FindMin(T->Right); //找出右子树中的最小值,这样它没有左子树
T->Element = TmpCell->Element;
T->Right = Delete(T->Element, T->Right);
}
else //只有左子树或只有右子树
{
TmpCell = T;
if (T->Left == NULL)
{
T = T->Right;
}
else if (T->Right == NULL)
{
T = T->Left;
}
free(TmpCell);
}
return T;
} void printMember(Position T)
{
if (T == NULL)
printf("this Position is not exit\n");
else
printf("Element = %d\n", T->Element);
} void printTree(SearchTree T, int deep, char *s)
{
int i = deep;
if (T == NULL)
return;
i++;
while (deep)
{
printf("\t");
deep--;
}
printf("%s -> %d\n",s, T->Element);
printTree(T->Left, i, "left");
printTree(T->Right, i, "right");
return;
}
int main()
{
SearchTree T = NULL;
MakeEmpty(T);
T = Insert(, T);
T = Insert(, T);
T = Insert(, T);
T = Insert(, T);
T = Insert(, T);
T = Insert(, T);
T = Insert(, T);
printTree(T, ,"start");
printMember(Find(, T));
printMember(FindMax(T));
printMember(FindMin(T));
T = Delete(, T);
printTree(T, , "delete"); }
binaryTree:普通二叉树的更多相关文章
- 二叉树JAVA实现
为了克服对树结构编程的畏惧感和神秘感,下定决心将二叉树的大部分操作实现一遍,并希望能够掌握二叉树编程的一些常用技术和技巧.关于编程实现中的心得和总结,敬请期待!~ [1] 数据结构和表示: 二叉树的 ...
- 数据结构算法及应用——二叉树
一.二叉树性质 特性1 包含n (n> 0 )个元素的二叉树边数为n-1 特性2 二叉树的高度(height)或深度(depth)是指该二叉树的层数(有几层元素,而不是有层的元素间隔) 特性3 ...
- Python_二叉树
BinaryTree.py '''二叉树:是每个节点最多有两个子树(分别称为左子树和右子树)的树结构,二叉树的第i层最多有2**(i-1)个节点,常用于排序或查找''' class BinaryTre ...
- C语言实现二叉树的建立、遍历以及表达式的计算
实现代码 #include <stdio.h> #include <stdlib.h> #include <malloc.h> #include <ctype ...
- 二叉树的遍历--C#程序举例二叉树的遍历
二叉树的遍历--C#程序举例二叉树的遍历 关于二叉树的介绍笨男孩前面写过一篇博客 二叉树的简单介绍以及二叉树的存储结构 遍历方案 二叉树的遍历分为以下三种: 先序遍历:遍历顺序规则为[根左右] 中序遍 ...
- java实现二叉树demo
二叉树(BinaryTree)是n(n≥0)个结点的有限集,它或者是空集(n=0),或者由一个根结点及两棵互不相交的.分别称作这个根的左子树和右子树的二叉树组成. 这个定义是递归的.由于左.右子 ...
- Java实现二叉树的创建、递归/非递归遍历
近期复习数据结构中的二叉树的相关问题,在这里整理一下 这里包含: 1.二叉树的先序创建 2.二叉树的递归先序遍历 3.二叉树的非递归先序遍历 4.二叉树的递归中序遍历 5.二叉树的非递归中序遍历 6. ...
- 手写二叉树-先序构造(泛型)-层序遍历(Java版)
如题 先序构造 数据类型使用了泛型,在后续的更改中,更换数据类型只需要少许的变更代码 层序遍历 利用Node类的level属性 所有属性的权限全为public ,为了方便先这么写吧,建议还是用priv ...
- 数据结构-二叉树的遍历实现笔记C++
二叉树的遍历实现,可以用递归的方法也可以用非递归的方法.非递归的方法可以借助栈(前序遍历,中序遍历,后序遍历),也可以借助队列(层次遍历).本次笔记只使用了递归的方法来进行前序遍历,中序遍历,后序遍历 ...
随机推荐
- uva 10635 - Prince and Princess(LCS)
题目连接:10635 - Prince and Princess 题目大意:给出n, m, k,求两个长度分别为m + 1 和 k + 1且由1~n * n组成的序列的最长公共子序列长的. 解题思路: ...
- [AS3]as3用ByteArray来对SWF文件编码加密实例参考
[AS3]as3用ByteArray来对SWF文件编码加密实例参考,简单来说,就是将 swf 以 binary 的方式读入,并对 ByteArray 做些改变,再重新存成 swf 档.这个作业当然也可 ...
- 【简单项目框架一】Fragment实现的底部导航
流行的应用的导航一般分为两种,一种是底部导航,一种是侧边栏. 我所做的项目涉及到比较多的是底部导航,今天我就把项目中使用的一种实现方式分享一下. 主要实现思路是:在一个Activity里面底部添加四个 ...
- Sybase Power Designer 16.5破解版下载
http://pan.baidu.com/s/1ddsjs 下载后正常安装,然后将压缩文件里的dll文件拷到安装目录下覆盖原文件,启动Power Designer后,选择help-->abou ...
- OC——类
1.Objective-C是C语言的超集,完全兼容C语言 2.所有的关键字都以“@”开头,例如:@interface,@class,@implementation 3.Objective-C的所有对象 ...
- C# 2 运算符 if
运算符: 一.算术运算符: + - * / % ——取余运算 取余运算的应用场景: 1.奇偶数的区分. 2.把数变化到某个范围之内.——彩票生成. 3.判断能否整除.——闰年.平年. int a = ...
- C# 1作业 2广场砖面积 护栏长度
作业1输入圆柱体的底面半径和高求体积 static void Main(string[] args) { //输入圆柱体的底面半径, ...
- 回溯算法————n皇后、素数串
回溯就是算法是搜索算法中一种控制策略,是一个逐个试探的过程.在试探的过程中,如果遇到错误的选择,就会回到上一步继续选择下一种走法,一步一步的进行直到找到解或者证明无解为止. 如下是一个经典回溯问题n皇 ...
- js中继承的方法总结(apply,call,prototype)
一,js中对象继承 js中有三种继承方式 1.js原型(prototype)实现继承 代码如下: <SPAN style="<SPAN style="FONT-SIZE ...
- Flask中endpoint的理解
在flask框架中,我们经常会遇到endpoint这个东西,最开始也没法理解这个到底是做什么的.最近正好在研究Flask的源码,也就顺带了解了一下这个endpoint 首先,我们看一个例子: @app ...